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Human Activity Recognition(HAR)



[1] LIMU-BERT: Unleashing the Potential of Unlabeled Data for IMU Sensing Applications; Xu et al.
[2] SelfHAR: Improving Human Activity Recognition through Self-training with Unlabeled Data; Tang et al.

Single-modal HAR



[1] RFID and Camera Fusion for Recognition of Human-object Interactions; Liu et al.
[2] milliEgo: Single-chip mmWave Radar Aided Egomotion Estimation via Deep Sensor Fusion; Lu et al.
[3] AttnSense: Multi-level Attention Mechanism For Multimodal Human Activity Recognition; Ma et al.

Multi-modal HAR



[1] Multimodal Clustering Networks for Self-supervised Learning from Unlabeled Videos; Chen et al.
[2] Contrastive Multimodal Fusion with TupleInfoNCE; Liu et al.

Multi-modal learning w/ limited labeled data



Challenges

1. Heterogeneous info(e.g. Different dimensions) from different modalities 

about the same events
a. Difficult Synchronization

b. Difficult Fusion

2. Limited amount of labeled data for training(very labor-intensive for labeling 

multi-modalities data)

3. Privacy issue: can only process on-device and delete, can’t upload to cloud

4. Computational cost concern: on-device training for dynamic characteristics



Design



Key term for context

Complementary information

Acc is better for walking-related activities 

while Gyro is better for the rest



Key term for context

Complementary Information
- Acc is better for walking-related 

activities; Gyro is better for the rest

- exploits strength of different sensors 

and promotes fusion performance

Consistent Information
- The model has learned to project both 

modalities into similar regions of feature 

space for the same underlying activity.

- helps align features, making the fusion 

more robust to noise



Key term for context





For each modality j, apply its own feature encoder fencj(⋅)

Where zi
j ∈ RDj is a flattened one-dimensional feature vector extracted 

from the j-th sensor modality with length D j

Then, z will be fed into off-the-shelf deep learning network like CNN for 
processing



Projection networks (h1 (·), ..., hM (·)) are simple MLP(multi-
layer perceptrons) along with normalization to make all 
unimodal features same dimension D

Where ri
j ∈ RD (typically D=128)



Given {rj
i, ∀j=1,…,M} from sample xi, then randomly generate 𝑃

fusion-based feature augmentations as {vi
k, ∀𝑘 = 1,...,𝑃} from 

sample xi, where P is independent of M.

where 𝛼1k, ..., 𝛼Mk ∈ [0, 1] are randomly sampled and





Let 𝑠 ∈ S ≡ {1, 2, ..., 𝑃×𝑁} and 𝑝 ∈ 𝑃(𝑠), P(s) is the set of indices of all positive 
features of 𝑠 in the minibatch and distinct from 𝑠
Contrastive loss:

where vs is the final output-augmented feature vector; τ is the temperature for the 
softmax of the loss(fine tuning for better performance)

Then, minimizing the loss function to push the augmented features from the same 
original multimodal sample closer, while separating the augmented features from 
different original samples





zj: the actual feature vector from the encoder.
μj: a learned transformation of zj that acts like a “query” for its importance.
β(Attn)j: the normalized importance weight for modality j

H(xj): Hopkins statistic, a statistical metric between 0 and 1 for clusterability
cj: the absolute difference between the number of clusters and the ground truth
β(Attn)j: the normalized quality weights for modality j





λ: tunable hyper-parameter to adjust the impact of quality-based weights
βj: the normalized combined weights for modality j

Fusion Mechanism:

For sensors of similar modalities (e.g. accelerator and gyroscope) and when the unimodal features 
have the same dimension:

For sensors of extremely diverse modalities (e.g., the depth camera and IMU) or when the unimodal 
features have different dimensions:



Goal: explore complementary information from labeled multimodal data while 
avoiding overfitting on sensor-specific features
Steps:
1. initialize the feature encoders w/ pretrained model weights, and randomly 
initialize the classifier.
2. the feature encoders will be fine-tuned for 𝑇iter epochs with the classifier 
fixed, Titer: the epochs of iterative training. 
3. train the classifier for 𝑇iter epochs with the encoders fixed 
This procedure will run until the preset epoch number is reached.





Evaluations



Setups
1. Python & Pytorch,  

a. 0.01 lr, 64 bs for contrastive learning; 0.01 lr, 16 bs for supervised learning

2. Cloud:
a. 8 NVIDIA GEFORCE TITAN Xp GPUs

b. 256 GB RAM

c. two 16-core Intel Xeon E5-2620 (2.10GHz) CPUs

3. Edge: NVIDIA Jetson TX2
a. 256-core NVIDIA Pascal architecture GPU

b. Dual-core NVIDIA Denver 2 64-bit CPU and quad-core Arm® Cortex®-A57 MPCore processor

c. 8GB 128-bit LPDDR4(59.7GB/s)

4. Baselines: SingleModal, DeepSense, AttnSense, Contrastive Predictive Coding 

(CPC), Contrastive Multi-view Learning (CMC)

5. Datasets:



Setups - self-collected datasets



Figure 12: Under the 
condition that num of 
labeled data is fixed

USC: 1%, 200
UTD: 5%, 27
Self-Collected: 2%, 56







Future Works
& Opinions



Limitations & Future Works

1. Filtering techniques for throwing out irrelevant information

2. Synchronized errors-leverage the consistent information across the features of 

different modalities to align the multimodal data stream.

3. Faster inference
a. Cache data from different sensors to enable faster convergence 

b. Dynamic sensor selection

4. Federated learning for further performance improvement and privacy 

protection in stage 1



Opinions

1. Question mark for the SOTA analysis

2. Strong assumption on the data availability

3. Paper writing is not perfectly clear
a. Data quality confusion

b. Missing loss function statement



Perusall
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