Gosmao: Contrastive Fusion Learning with Small
Data for Multimodal Human Activity Recognition

Presenter: Yunxiang Chi
09/23/2025



Human Activity Recognition(HAR)
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Single-modal HAR
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[1 LIMU-BERT: Unleashing the Potential of Unlabeled Data for IMU Sensing Applications; Xu et al.

[2] SelfHAR: Improving Human Activity Recognition through Self-training with Unlabeled Data; Tang et al.
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Multi-modal HAR
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[1] RFID and Camera Fusion for Recognition of Human-object Interactions; Liu et al.
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[2] milliEgo: Single-chip mmWave Radar Aided Egomotion Estimation via Deep Sensor Fusion; Lu et al.
[3] AttnSense: Multi-level Attention Mechanism For Multimodal Human Activity Recognition; Ma et al.




Multi-modal learning w/ limited labeled data
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[1] Multimodal Clustering Networks for Self-supervised Learning from Unlabeled Videos; Chen et al.

[2] Contrastive Multimodal Fusion with TuplelnfoNCE; Liu et al.
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Challenges

1. Heterogeneous info(e.g. Different dimensions) from different modalities

about the same events

a. Difficult Synchronization
b. Difficult Fusion

2. Limited amount of labeled data for training(very labor-intensive for labeling
multi-modalities data)

3. Privacy issue: can only process on-device and delete, can’t upload to cloud

4. Computational cost concern: on-device training for dynamic characteristics






Key term for context

Complementary information
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Key term for context
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Complementary Information
- Acc is better for walking-related
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activities; Gyro is better for the rest
- exploits strength of different sensors

and promotes fusion performance

Consistent Information
- The model has learned to project both

(a) Deepsense (D = 0.7288). (b) Attnsense (D = 0.7685).

Figure 2: Visualization of Acc and Gyro features generated by
different fusion approaches. Here D denotes the mean cosine
space for the same underlying activity. distance between Acc and Gyro features. Deepsense learns
- helps align features, making the fusion more consistent information (the features of two modalities
have a smaller mean distance and are more aligned), while
AttnSense combines more complementary information.

modalities into similar regions of feature

more robust to noise



Key term for context
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For each modality j, apply its own feature encoder fep()

= Flatten (fenc;(x7)),

Where zj € RD is a flattened one-dimensional feature vector extracted

1=1,..

from the j-th sensor modality with length D;

Then, z will be fed into off-the-shelf deep learning network like CNN for

processing
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Figure 6: Illustration of fusion-based contrastive learning
on the normalized feature space. The positive features are
generated by sampling different weighted combinations of
modalities from the same multimodal sample, while the neg-
atives are augmented from the remaining multimodal sam-
ples in the batch. The contrastive fusion loss contrasts the

positives to be closer to each other and pushes away the neg-
ative features.
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Contrastive loss:

different original samples

PEP(s)

\

exp(vs * vp /1)

Lets € S={1, 2, ..., PxN}and p € P(s), P(s) is the set of indices of all positive
features of s in the minibatch and distinct from s

IS aesi (s} exp(Vs - Val D)

where v, is the final output-augmented feature vector; T is the temperature for the
softmax of the loss(fine tuning for better performance)

Then, minimizing the loss function to push the augmented features from the same
original multimodal sample closer, while separating the augmented features from
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1. Contrastive
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pj = tanh(W - zj +b),
. explyy-z)

B(Attn); = Trexpy )’
z;. the actual feature vector from the encoder.
K. a learned transformation of z; that acts like a “query” for its importance.
B(Attn);: the normalized importance weight for modality |

H(I) QoM 4j
‘i‘i:T_ja B; qu ﬁ(QOM)] = QJ/ZJ 19j

H(x;): Hopkins statistic, a statistical metric between O and 1for clusterability
¢;- the absolute difference between the number of clusters and the ground truth
B(Attn);: the normalized quality weights for modality j
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(a) IMU (g, = 0.26). (b) Depth (g, = 0.74).
Figure 7: Measuring data quality from unlabeled data. g;(j =
1,2) is the calculated quality weight. Compared with IMU,
the depth data has a higher clusterability (0.8513), and the
optimal number of clusters (24) is closer to the number of
total classes (27).



1. Contrastive

2. Iterative Fusion Learning

Edge

= (- pcanm); + Aoty By = Bi/ TN, B

A: tunable hyper-parameter to adjust the impact of quality-based weights
B;: the normalized combined weights for modality j

Fusion Mechanism:

For sensors of similar modalities (e.g. accelerator and gyroscope) and when the unimodal features
have the same dimension:

vi= SumAttn(zi, zf;u) = Zﬁjz;
Jj=1
For sensors of extremely diverse modalities (e.g., the depth camera and IMU) or when the unimodal
features have different dimensions: . . ] . )
v' = ConcateAttn(zy, ..., zy,) = [ P12}, ... BMZy,]
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Goal: explore complementary information from labeled multimodal data while
avoiding overfitting on sensor-specific features
1. Contrd Steps:
1. initialize the feature encoders w/ pretrained model weights, and randomly
initialize the classifier.
d .-,: 2. the feature encoders will be fine-tuned for T, epochs with the classifier
- fixed, T, the epochs of iterative training.

Cloug 3. train the classifier for T, epochs with the encoders fixed
This procedure will run until the preset epoch number is reached. -
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1.  Python & Pytorch,
a. 0.01lr, 64 bs for contrastive learning; 0.01 Ir, 16 bs for supervised learning

2. Cloud:

a. 8 NVIDIA GEFORCE TITAN Xp GPUs
b. 256 GB RAM
c. two 16-core Intel Xeon E5-2620 (2.10GHz) CPUs

3. Edge: NVIDIA Jetson TX2
a. 256-core NVIDIA Pascal™ architecture GPU

b. Dual-core NVIDIA Denver™ 2 64-bit CPU and quad-core Arm® Cortex®-A57 MPCore processor
c. 8GB 128-bit LPDDR4(59.7GB/s)

4. Baselines: SingleModal, DeepSense, AttnSense, Contrastive Predictive Coding
(CPC), Contrastive Multi-view Learning (CMC)

5. Datasets: Dataset Modality Activity Subject Samples
USC Acc, Gyro 12 14 38312
UTD IMU, Skeleton 27 8 864

Self-Collected IMU, Depth, Radar 14 30 3434




Setups - self-collected datasets

Depth Image Radar

I
.

() nnete. - (b) Collected Data.



=== Gyro ®ms DeepSense 2% CPC ™~ Cosmo = MU msm DeepSense W% CMC %> Radar W= DeepSense s CMC

W Acc  ®Ess AttnSense 4% CMC W Skeleton  mmm AttnSense W Cosmo == MU mess AttnSense W\ Cosmo
i Depth
90 100 10
gq..... AttnSense 100% labeled - go [——-AiuSense.100% Jaheled. : 90, AttnSense 100% labeled
N
S " AUs — 80 : & N — 80| {
e 70 ) §\ o N o : xCs £ 70 S g\ N X 70/ !
= 60" g N €8 ¥ xis -~ : e 3 5 Hy L) A
> gl Ses I N 8 > 60 y N ¢ X & ~ 60! q ’
@50 at BEN BNRCAC BRI BHENN @ 50 \ } N 2 < ® 50 ) §
3 40- 50 2 <Un e XEN S 40 \ : N : N 5 a0 ] \
O bi N XN v} N N N o] H b
o i M S < XN N o 30 N N o 30 5 e
< 30 R b & 585 Xis < 20 H b N I < \ N
so HIERZSY BURESH ElRSch: SHAS<h Flae.t. 2 \ 2 \ H 2 3 i
10 :“: 2.‘.\ g : : : ! \ e ; : ; I : ; 10| : ¥ I & / 5
200 1000 2000 4000 6000 27 56 108 162 216 56 140 280 420 560
(1%)  (5%) (10%) (20%) (30%) (5%) (10%) (20%) (30%) (40%) (2%)  (5%) (10%) (15%) (20%)
Amount (Percentage) of Labeled Data Amount (Percentage) of Labeled Data Amount (Percentage) of Labeled Data
(a) USC (b) UTD (c) Self-collected

Figure 11: Accuracy comparison with different amounts of labeled data. Cosmo consistently outperforms other baselines, and

can achieve comparable accuracy of AttnSense (with 100% labeled data) with only a small portion of labeled data.
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Approach  Label rate Cosmo Stage 1 Cosmo Stage 2 DeepSense AtinSense o o
>
Time (min) 1% 101.19 25.93 38.38 62.52 550 ‘
2% 90.13 49.87 74.42 120.98 g
40
1% 7286.07 21.34 30.99 51.71 I
E K
nergy (KJ) 2% 6489.70 4035 60.90 98.58 R
Sineg “epg. . ’78@05
Table 3: Training overhead. The first stage of Cosmo is trained (@) A - )
a ccuracy.

on the server. The others are trained on Jetson TX2.
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Figure 17: Inference performance on Jetson TX2.

Self-Collected

201 |

0=

Cosmo

0 50 100 150 200 250
Epoch

Figure 14: Convergence comparison on limited labeled data.
Cosmo converges faster than supervised learning baselines.
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Limitations & Future Works

1. Filtering techniques for throwing out irrelevant information
2. Synchronized errors-leverage the consistent information across the features of
different modalities to align the multimodal data stream.

3. Faster inference

a. Cache data from different sensors to enable faster convergence
b. Dynamic sensor selection

4. Federated learning for further performance improvement and privacy
protection in stage 1



1.  Question mark for the SOTA analysis
2. Strong assumption on the data availability

3. Paper writing is not perfectly clear

a. Data quality confusion
b. Missing loss function statement
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