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1.1 Motivation: Clinical Motivation of Spirometry

Spirometry is the gold standard for

evaluating lung function. It measures how and ows 0 hard 3 possl
much and how fast a person can breathe in
and out.

Technician monitors
and encourages
patient during test

It 1s critical for diagnosing chronic
respiratory diseases (CRDs) like COPD and
asthma, and 1s recommended for high-risk
groups (e.g., coal workers, smokers) even
before symptoms appear

Machine records
the results of the
spirometry test



1.2 Spirometry Basics 8
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Fig. 2. The F-V curves of different lung conditions. (a) Normal. (b) Obstructive lung disease. The expiratory limb exhibits

a steeple shape [30]. (c) Restrictive lung disease. The shape of the curve is reduced in size [58] (d) Variable extrathoracic
obstruction. The inspiratory limb is flattened [51].

Outputs:

v Flow—Volume (F-V) curve: A central tool. Its shape can reveal lung
conditions (normal, obstructive, restrictive, extrathoracic obstruction).
Figures 2 and 3 illustrate diagnostic patterns and unacceptable maneuvers

v Indices extracted:
m  Core: FVC (forced vital capacity), FEV1, FEV1/FVC, PEF (peak

expiratory flow).

m  Additional: FEFx% (flow at 25%, 50%, 75% of FVC), FEF25-75%,
FIVC (forced inspiratory vital capacity), PIF (peak inspiratory flow),
FIFx% (flow at % of inspiratory volume)



1.3 limitations of current system

e  Conventional spirometers: accurate but bulky, clinic-only, and expensive portable models (=$2000+) limit accessibility
e Smartphone-based spirometry (SpiroSmart, SpiroCall, etc.): reduce cost, but only measure four expiratory indices (FVC,
FEV1, FEV1/FVC, PEF). They miss two critical aspects:
1. F-V (flow—volume) curve — essential for:
m  Diagnosing impairments (e.g., concave expiratory limb = obstructive disease).
m  Quality control of maneuvers (Fig. 3 shows unacceptable curves).

m  Remote/home use where doctors must validate maneuver correctness

2. Inspiratory measurement — vital for detecting conditions like variable extrathoracic obstruction, where the
inspiratory limb flattens while the expiratory limb appears normal
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Fig. 3. F-V curves of unacceptable maneuvers. (a) Sub-maximal expiratory effort. The shape of the expiratory limb is rounded
[30]. (b) Slow start. The peak occurs late in the expiratory limb [30]. (c) Sub-maximal expiration. The inspiratory volume is
larger than the expiratory volume [30]. (d) False start. The hesitation time at the beginning of the F-V curve is overlong [30].



1.3 Research question + background

Can we design a low-cost, mobile system that measures the full F-V curve (expiratory + inspiratory), comparable to a clinical
spirometer?

Airflow creates sounds when passing through constricted areas like the airway. These sounds correlate with flow rate
Earphones with microphones can capture these sounds effectively because:

e  Sounds propagate through bone/tissue to the ear canal (bone conduction).
e  Even weak signals (inspiration) are perceivable at the ear.

e Fixed placement in the ear eliminates distance variability (unlike phone mics)



1.3.1 Airflow sound as signal
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Fig. 4. The correlation between flow rate and airflow sound. From top to bottom are time-domain, frequency-domain, and
flow rate signals.



2. System overview
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Fig. 5. The workflow of EarSpiro.



2.1: Audio Feature Extraction

Step 1: STFT (Short-Time Fourier Transform)
Step 2: Mel Filter Bank

Purpose: Audio feature extraction converts noisy, high-dimensional raw sound into a
compact, meaningful Mel spectrogram representation that preserves breathing-related
features and discards irrelevant detail.



M(f) = 1125 - log(1 + f/700). - .
K Time (s) K Time (s)
(a) Spectrogram. (b) Mel spectrogram.

M=H'S,

Fig. 6. Spectrogram and Mel spectrogram.

where M, H and S are the Mel
spectrogram, the Mel filter bank, and the

Table 1. Parameters in the audio feature extraction module.

b Para Explanation Value
Orlg lnal Sp eCtrO gram fs Sampling frequency. 48000
Twin Length of each STFT segment. 50ms
Nprr  FFT point. 2400
Povlp  Overlap ratio between segments. 75%
fiow The lowest frequency. 0.5kHz
fnigh ~ The highest frequency. 15kHz

M Number of filters in the Mel filter bank. 100




2.2 Expiratory and Inspiratory Phase Segmentation

Input feature: the Mel spectrogram from §4.1.
Goal: localize the expiratory and inspiratory intervals (time ranges) within the recording.

Challenges: (1) environmental/inertial noise (friction, chair/floor contact, teeth knocking); (ii) weak inspiration
(often below the noise floor), so the “clear” patterns seen in Fig. 6(b) are not guaranteed in practice. Hence, tailored
algorithms are needed for each phase.



2.2.1 Expiration Segmentation
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Fig. 7. Expiratory phase segmentation. (a) Mel spectrogram. (b) Energy profile of the Mel spectrogram. (c) Energy profiles of
the five sub-bands.



Expiration Segmentation

Start detection:

Expiration begins with a sharp energy burst.

Compute energy profile from Mel spectrogram —
smooth with Hampel filter — apply gradient search
to find the start

End detection:

Different frequency bands decay at different rates.
Split Mel spectrogram into five sub-bands, apply
gradient search to each — take the latest end time as
expiration end (Fig. 7c¢).

Input: energy profile, sub-band energies.

Output: estimated start & end indices

Algorithm 1 Expiratory Phase Segmentation

Input: E[n]: energy profile; Ey.[n]: energy profiles of the target sub-bands; f;: central frequencies of the target sub-bands; d:

step size; w: window length; c: stop criterion.

Output: ny: Estimated start time; n;: Estimated end time.

10:
11
12:
13:
14:

1
2
3
4
34
6
7
8
9

: Ny « SEARCH(E[n], -d, w,c)

: fork=1to K do

ng < SEARCH(E) [n],d, w, )
: end for

m  max({ny)

: return ng, nq

: procedure SEARCH(E[n], d, w,c)
n « argmax(E[n])
while E[n] > %max(E[n]) or E["J'W—J/_E["] >cdo
nen+d
end while
return n
end procedure

> Execute the gradient search algorithm.

> Execute the gradient search algorithm on each sub-band.

> The gradient search algorithm.




2.2.2 Inspiration Segmentation
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Fig. 8. Two examples of inspiratory phase segmentation. (a-e) The first example. (f-j) The second example.



Inspiration Segmentation

Inspiratory sounds are weaker and irregular.
Method:

1. Z-score normalize Mel spectrogram frames.
2. Treat each frame as a probability distribution over frequency.
3. Apply K-means clustering — clusters correspond to background noise, weak inspiration, etc.

4. Extract the segment belonging to inspiration cluster (Algorithm 2).



2.3 : Deep Learning—based F-V Curve Estimation

CNN — GRU — Fully Connected layers:

e (NN extracts spatial features from Mel spectrogram (both ears).

Flow Frequency

e  GRU (RNN) captures temporal correlation, robust to non-Gaussian noise.
(a) Truncating. (b) Zero-padding.

e  FC layers regress flow rate over time
Fig. 9. Data augmentation.
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Fig. 10. Flow rate estimator architecture. Fig. 11. Flow rate decoder. (a) The architecture. (b) Reconstructed flow rate sample:



3. Implementation

Prototype hardware

e  Commercial earphones + integrated MEMS microphones

e Interface: Seeed ReSpeaker voice board

e  Powered by Raspberry Pi 3 B+
Data acquisition

e  Audio captured with Audacity

e  Stored as WAV files for processing
Software & training

e  Processing software: Python 3.7

e  Deep learning: PyTorch 1.7

e  Training on Google Colab (Nvidia T4 GPU)

(a) Prototype. (b) Ground truth spirometer.

Fig. 14. EarSpiro implementation. (a) The prototype. (b) The spirometer used for ground truth collection.



4. Evaluation

Accuracy of Expiratory and Inspiratory Phase
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Flow-volume curve estimation
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Fig. 17. F-V curve estimation error. (a) CDF plot of mean
absolute error of expiratory limb estimation. (b) CDF plot
of mean absolute error of inspiratory limb estimation. (c)
Expiratory limb’s error distribution over the volume-axis . (d)
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Fig. 18. F-V curve estimation. (a-c) Examples of estimated
F-V curve ranked by mean absolute error. (d) Pearson corre-
lation coefficients of F-V curve estimation.
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Lung function indices estimation
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Fig. 20. Estimation error of four common lung function indices.
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Fig. 21. Lung function index estimation error.



Benefits of the CNN-GRU architecture
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Fig. 23. Effectiveness of the deep learning architecture.

Benefits of Data Augmentation
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Fig. 24. Effectiveness of the data augmentation.



Impact of Background Noise
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Fig. 25. Impact of background noise.
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Fig. 26. Interference of teeth knocking.
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Fig. 27. Impact of Earphone position.



Performance on Subjects with Lung Function
Impairments
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Fig. 28. Evaluation on six patients.

Performance on Abnormal F-V Curves
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Fig. 29. Evaluation on abnormal F-V curves.



Limitations & Discussion

Environment: Assumes quiet settings; noise can still affect weak inspiration.

Hardware: Prototype uses custom MEMS mic (not yet standard in commercial earbuds).

Calibration: Current system requires manual alignment for ground truth; automation needed for deployment.
Accuracy gap: Inspiratory errors remain higher than expiratory (due to weaker signals).

Future directions:

e  Better noise cancellation & segmentation.
e  Explore consumer earbud integration.

e  Refined model adaptation across diverse funnels/objects.



Let’s check perusall comments!



