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1.1 Motivation: Clinical Motivation of Spirometry

Spirometry is the gold standard for 
evaluating lung function. It measures how 
much and how fast a person can breathe in 
and out. 

It is critical for diagnosing chronic 
respiratory diseases (CRDs) like COPD and 
asthma, and is recommended for high-risk 
groups (e.g., coal workers, smokers) even 
before symptoms appear



1.2 Spirometry Basics

Procedure: A spirometry test requires:

1. Maximal inspiration,
2. Forceful expiration until no more air remains,
3. Maximal inspiration again

Outputs:

✓ Flow–Volume (F-V) curve: A central tool. Its shape can reveal lung 
conditions (normal, obstructive, restrictive, extrathoracic obstruction). 
Figures 2 and 3 illustrate diagnostic patterns and unacceptable maneuvers

✓ Indices extracted:
■ Core: FVC (forced vital capacity), FEV1, FEV1/FVC, PEF (peak 

expiratory flow).
■ Additional: FEFx% (flow at 25%, 50%, 75% of FVC), FEF25–75%, 

FIVC (forced inspiratory vital capacity), PIF (peak inspiratory flow), 
FIFx% (flow at % of inspiratory volume)



1.3 limitations of current system 

● Conventional spirometers: accurate but bulky, clinic-only, and expensive portable models (≈$2000+) limit accessibility
● Smartphone-based spirometry (SpiroSmart, SpiroCall, etc.): reduce cost, but only measure four expiratory indices (FVC, 

FEV1, FEV1/FVC, PEF). They miss two critical aspects:

1. F-V (flow–volume) curve – essential for:

■ Diagnosing impairments (e.g., concave expiratory limb = obstructive disease).

■ Quality control of maneuvers (Fig. 3 shows unacceptable curves).

■ Remote/home use where doctors must validate maneuver correctness

2. Inspiratory measurement – vital for detecting conditions like variable extrathoracic obstruction, where the 
inspiratory limb flattens while the expiratory limb appears normal





1.3 Research question + background

Can we design a low-cost, mobile system that measures the full F-V curve (expiratory + inspiratory), comparable to a clinical 
spirometer?

Airflow creates sounds when passing through constricted areas like the airway. These sounds correlate with flow rate

Earphones with microphones can capture these sounds effectively because:

● Sounds propagate through bone/tissue to the ear canal (bone conduction).

● Even weak signals (inspiration) are perceivable at the ear.

● Fixed placement in the ear eliminates distance variability (unlike phone mics)



1.3.1 Airflow sound as signal



2. System overview



2.1: Audio Feature Extraction

Step 1: STFT (Short-Time Fourier Transform)

Step 2: Mel Filter Bank

Purpose: Audio feature extraction converts noisy, high-dimensional raw sound into a 
compact, meaningful Mel spectrogram representation that preserves breathing-related 
features and discards irrelevant detail.



where M, H and S are the Mel
spectrogram, the Mel filter bank, and the 
original spectrogram



2.2 Expiratory and Inspiratory Phase Segmentation

Input feature: the Mel spectrogram from §4.1.

Goal: localize the expiratory and inspiratory intervals (time ranges) within the recording.

Challenges: (i) environmental/inertial noise (friction, chair/floor contact, teeth knocking); (ii) weak inspiration 
(often below the noise floor), so the “clear” patterns seen in Fig. 6(b) are not guaranteed in practice. Hence, tailored 
algorithms are needed for each phase.



2.2.1 Expiration Segmentation
 



Expiration Segmentation

Start detection:

● Expiration begins with a sharp energy burst.
● Compute energy profile from Mel spectrogram → 

smooth with Hampel filter → apply gradient search 
to find the start 

End detection:

● Different frequency bands decay at different rates.
● Split Mel spectrogram into five sub-bands, apply 

gradient search to each → take the latest end time as 
expiration end (Fig. 7c).

● Input: energy profile, sub-band energies.
● Output: estimated start & end indices



2.2.2 Inspiration Segmentation



Inspiration Segmentation

Inspiratory sounds are weaker and irregular.

Method:

1. Z-score normalize Mel spectrogram frames.

2. Treat each frame as a probability distribution over frequency.

3. Apply K-means clustering → clusters correspond to background noise, weak inspiration, etc.

4. Extract the segment belonging to inspiration cluster (Algorithm 2).



2.3 : Deep Learning–based F-V Curve Estimation

CNN → GRU → Fully Connected layers:

● CNN extracts spatial features from Mel spectrogram (both ears).

● GRU (RNN) captures temporal correlation, robust to non-Gaussian noise.

● FC layers regress flow rate over time



3. Implementation

Prototype hardware

● Commercial earphones + integrated MEMS microphones

● Interface: Seeed ReSpeaker voice board

● Powered by Raspberry Pi 3 B+

Data acquisition

● Audio captured with Audacity

● Stored as WAV files for processing

Software & training

● Processing software: Python 3.7

● Deep learning: PyTorch 1.7

● Training on Google Colab (Nvidia T4 GPU)



4. Evaluation 

Flow rate estimation 
Accuracy of Expiratory and Inspiratory Phase 
Segmentation



Flow-volume curve estimation



Lung function indices estimation



Benefits of the CNN-GRU architecture Benefits of Data Augmentation



Impact of Background Noise Impact of earphone’s position



 Performance on Subjects with Lung Function 
Impairments

Performance on Abnormal F-V Curves



Limitations & Discussion

Environment: Assumes quiet settings; noise can still affect weak inspiration.

Hardware: Prototype uses custom MEMS mic (not yet standard in commercial earbuds).

Calibration: Current system requires manual alignment for ground truth; automation needed for deployment.

Accuracy gap: Inspiratory errors remain higher than expiratory (due to weaker signals).

Future directions:

● Better noise cancellation & segmentation.

● Explore consumer earbud integration.

● Refined model adaptation across diverse funnels/objects.



Let’s check perusall comments!


