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Limitations

1. Sensing coverage
a. WiFi, UWB, mmWave, etc. -> sensing in meters
b. LoRa->sensingin hundreds of meters or km
c. LTE->sensingin km
d. ButLoRa and LTE require wide deployment and still ¥30% of the US is not covered

2. Affect communication functionality

a. Interference (e.g. LoRa in the LSencom paper)
b. Degradation of data rate (e.g. 100-1000 packets/sec need to be transmitted for sensing)

[1] https:/www.historytools.org/products/starlink-vs-Ite-how-do-they-compare
[2] Wilmg: Pushing the Limit of WiFi Sensing with Low Transmission Rates, Yang et al.
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Passive Sensing by GPS satellites

- 95% of the earth are covered by at least 4 GPS satellites
- Continuously emit signals 24/7

- No requirement for wear/hold the GPS receiver stationary

-----



Challenge 1 - Data Granularity

Most commercial GPS receiver modules only reports navigation-level quantities that
are useful for positioning:

- Carrier-to-noise-density ratio: The average signal-to-noise ratio that measures
how “strong and clean” the satellite signal is, used for receiver quality and
satellite selection—not for waveform analysis.

- Pseudorange: The apparent distance between Tx and Rx, derived from delay.

- Accumulated Carrier Phase

But what crucial for wireless sensing are not here:
- Amplitude
-  Phase
Thus, require signal reconstruction from the coarse navigation-level quantities



C/Ny = 10log;( P/B) (1)

where P, is the power of the GPS carrier, P, is the power of
the noise and B is the bandwidth.

p=r+cty+ép, (2)
where r is the geometric range between the receiver and the
satellite, ¢, is the measurement error, c is the light speed,
and 1, is the clock bias of the receiver.

d = —+f fptdt + &g, (3)

where fp is the frequency shift caused by Doppler eftect, ry
is the initial geometric range between the receiver and the
satellite, and &g is the measurements errors. Note that phase




Challenge 2 - Lack of Model

Fresnel Zone Model are mostly used in WiFi,
mmWave, LTE, UWB, etc. for wireless sensing
For GPS geometry:

- Satellite altitude = 20-200km (MEQO, or GEO

even more) . | Z dius. R ndydgA
esnel Aone radius, =
- Wavelength A=0.19m (L1 band) e e di+d;
- Target—receiver separation d = “1-10m Where,
n = Fresnel Zone number (Should be greater than zero)
[ Ad1d; \/ 0.19 x (2 x 107m x 10m) 0.43  ~ Frequency
™ = =~ ~= .4om |, =

: dy + dy 2 x 107m

Plus, MEO/GEO moving 4km/s, phase is wildly /"’_I—;mmw N
spinning due to satellite motion \\ /

Channel is also non-static, time-varying a1 de




Challenge 3 - Satellites Variety

GNSS(global navigation satellite system)
satellites in MEO and GEO moving at
different speeds: @
- GPS
- Galileo(Europe)
- Beidou(China)
->a GNSS receiver can get signals from
over 30 satellites above at the same time

GNSS satellites moves faster than earth
rotation

-> the satellites a receiver can capture
signals from vary during a day
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Why measurements can't be used

1. Measurement errors -> sensing signal
variation can be buried by the variations

from errors

a. Weather
b. Clock-drift

c. Satellite Movements
2. Too coarse for fine-grained sensing(e.g.

respiration)
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Amp(t) = VP, 10(C/No)/10, (4)
where P, = kT is the noise power in a 1-Hz bandwidth [22],
k is the Boltzmann constant in Joules per Kelvin, T is the
temperature in Kelvin, and C/Nj is the reported Carrier-to-
noise-density ratio. The carner phase ¢ of the GPS signal

p(1) = zfr(— - for + £, 5)

where @ is the reported accumu.lated carrier phase, p is the
reported pseudorange, fp is Doppler frequency shift caused
by the satellite movement, #;, is the clock bias of the receiver.

S(t) = Amp(t)e/?® (6)
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Challenge 2 - Lack of Model

Fresnel Zone Model are mostly used in WiFi,
mmWave, LTE, UWB, etc. for wireless sensing
For GPS geometry:

- Satellite altitude = 20-200km (MEQO, or GEO

even more) . | Z dius. R ndydgA
esnel Aone radius, =
- Wavelength A=0.19m (L1 band) e e di+d;
- Target—receiver separation d = “1-10m Where,
n = Fresnel Zone number (Should be greater than zero)
[ Ad1d; \/ 0.19 x (2 x 107m x 10m) 0.43  ~ Frequency
™ = =~ ~= .4om |, =

: dy + dy 2 x 107m

Plus, MEO/GEO moving 4km/s, phase is wildly /"’_I—;mmw N
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Target moves -> receiver captures signal from LoS and
reflection path d, from the target

-> horizontal distance from Rx to target: d = d,cosf

-> phase difference: gu (e - dros = 22929 , 4

Assumed elevation angle is constant in short time

-> Everytime A increases by 2m

-> one constructive=sdestructive=sconstructive cycle

-> d between consecutive peaks: Ad= ﬁ

+ signal strength decreases as target moves from RX

->target’s movement

Weak signal (-120dBm) -> only reflection from large body
part, e.g. torso -> use diffraction later to sense arms & legs
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Figure 4: Reflection Verification Experiment: a metal

box moves away from the GPS Receiver.

The average of measured moving distances between two peaks is 0.105 m, which
matches the theoretical distance (0.101 m)

For this model, only the reported signal incident angle is required for sensing



Diffiraction Model

Diffraction effect dominates when the human targetis
very close to or on the LoS path of the GPS signal
When a GPS signal wave impinges on the edge of an

Diffracted
Roys

object, the outgoing rays is in the shape of a cone[1]

Incidant
Ray

A target goes across LoS path between GPS TX and RX
-> signals diffracted at the edge of the moving target

Edge

When the target moves further

->the object’s Keller Cone due to diffraction appears (b}
-> RX receives a combination of the diffracted signals Receiver i the
Keller shadow of the target
the LoS signals Cone 1. Front edge o2 Buk el

reaches the LoS leaves the Los
-> a small variation of the combined signal strength l /mm ///// e ——+ Moving Pah

as the LoS path signal still dominates Signal | — Location 1 |
fRX Loc | Strength —— Location 2
When the target moves further ¥4 RX Loc 2 —— Location 3
-> LoS path is obstructed, strength of received signal e | SRV
GPS Shadow Distances

decreases rapidly ) . .
[1] Geometrical theory of diffraction, Keller et al. (a) Diffraction of GPS signals. (b) Theoretical signal strength changes.
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Challenge 3 - Satellites Variety

GNSS(global navigation satellite system)
satellites in MEO and GEO moving at
different speeds: @
- GPS
- Galileo(Europe)
- Beidou(China)
->a GNSS receiver can get signals from
over 30 satellites above at the same time

GNSS satellites moves faster than earth
rotation

-> the satellites a receiver can capture
signals from vary during a day
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Compare the average signal variation from satellites on the left side with that from the right side
-> |f value from left is higher, then concludes that the movement is from the left side of the target
-> only consider GPS signals from the left side, vice versa

Compare the average signal variation at high-elevation angles with that at low-elevation angles
-> Elevation angle threshold is set as 40 degrees

-> If value from high-elevation angles is higher, then concludes that the movement pertains to upper
body part of the target

-> only consider GPS signals from the upper part, vice versa
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Challenges for fine-grained sensing

The next step is to identify which human activity (e.g., arm swing, walk) from
the corresponding patterns
- The same activity never looks identical in time: different users or
repetitions might be slightly faster/slower
- Different satellites see the same motion at different angles and thus with
different timing or phase lag
- So you can’t just compare two signals sample-by-sample (that would
misalign them)
the satellite positions during the collection of the current template differ from
those during the collection of the reference template



Dynamic Time Warping (DTW)

DTW finds the best nonlinear alignment between two
sequences may be stretched or compressed in time.
- Reference template: signal pattern for a known

activity (e.g., one arm swing)

- Observed signal: real-time measured signal for

an unknown movement

They might have the same shape but one is

performed faster or slower.

DTW helps align them.

'X \ /oomnooooooo

s a2 2 J

Euclidean distance Dynamic Time Warping
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Reference Template
for Diffraction Model
XP(i), wherei € N

Current Template

Reference Template
for Reflection Model
XR(i), wherei € N

s argmin ||x7|°DTW (xP, XP (i) + ||x*|’DTW(x®, X®(i)) —

ieN

for Diffraction

—Model: xP

Current Template

for Reflection Model:

R

X!



Challenges for fine-grained sensing

The satellite positions during the collection of the current template differ from those
during the collection of the reference template

DTW assumes that two sequences differ only in time scaling

However, the satellite’s geometry changes over time (=3—4 km/s in MEO)

-> different positions and different incident angles

-> path lengths, reflection geometry, and diffraction edges all shift.

-> the received signal variation changes also in shape and scale

From experiments:
Satellites whose azimuth and elevation angles are close to each other (within 30 ° azimuth,
20° elevation) produce very similar signal variation patterns for the same movement.

Same angular sectors -> similar signal variation
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GPS Receiver: Ublox FOP GNSS module
with update rate: 25Hz

Different GPS RX module for testing:
Ublox M10, Ublox MON, Ublox M8N
Update rate: 10, 25, 15Hz

Google Pixel 4, update rate: 1Hz

Processing unit: Intel i7 CPU, 16GB RAM

GNSS Receiver
Antenna

Sensing Target

Figure 13: GNSS
Module.

r— ey

l'bl])\- | Ublox-
M10 | MON

l'hio\-
MSN

(a) Sensors. (a) Experiment Setup.



Human Activity Sensing

Eight body movements
Repeats each movements for 100 times while taking one of them as reference template
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Figure 15: Overall human activities sensing accuracy.



Sensing with different GNSS receiver modules
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Sensing with commodity smartphones
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Figure 17: GPS sensing with a smartphone.
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Passive tracking

Target doesn’t carry a GNSS receiver
Trajectories: straight line, circle, rectangle

Trajectory ~ — = Ground Truth

2 2
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(a) Line. (b) Circle. (c) Rectangle.



Respiration monitoring
Indoor environments with a low-cost GNSS repeater, repeater-Rx distance 2m
Normalized Amplitude
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(b) Extracted Amplitude.

20

(a) Experiment Setup.



Respiration monitoring

Outdoor environments with target-Rx distance 2m
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Performance houndary - coverage
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Performance houndary - interference
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Figure 22: One target and two interferers.
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1. Limited number of activities (machine learning-based classification models
could increase the num of activities)

2. Improves sensing performance by utilizing both GPS and other wireless
module on the smartphone -> multimodal sensing



1. Great paper overall
a. Very clear explanations, especially the figures are really good
b. Comprehensive experiments

2. More plots to show the baseline plots would be better

3. Experiments hardcoded the human’s facing angle and elevation angle
-> |DEA: use the sensing results from all of these available satellites to
determine the pose(heading, speed, behavior) of the human.

4. Practical issues: Accuracy will be affected heavily by interference, e.g. human,

multipath, heights, weather, time-of-the-day, etc.
a. Require more experiments
b. Require a smarter strategy from reference antenna approach



Perusall
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