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Background

Neural Radiance fields (NeRF) by Google uses a few shots of photos to
produce view synthesis.

|.e., train a neural network using a few ray traces of light to predict the light
paths of other TX/RX pair in the same environment.

Question: can we do the similar things for communication radio waves?



Challenges from Light to Radio Waves

e Microwaves are more prone to be reflected, diffracted, and scattered.

e For light, only amplitude/real-value signal is considered. For radio waves,
phase/complex-value signal is needed.

e The RX model is different: antenna (array) vs million-pixel camera

Need to update the underlying tracing model — nontrivial new design.



NeRF2: Neural Radio-Frequency Radiance Fields

e A new tracing model for radio waves
e Single antenna & multi antenna RX model
e “Turbo-learning”: data augmentation using NeRF2

e NeRF2 application: BLE RSSl/localization prediction and MIMO CSI prediction



Design: Modeling the Radiance Field
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Fig. 1: Illustration of a radio-frequency radiance field. The ideal distribution of
RF radiance is disturbed by the obstacles, which cause the RF signals to be reflected,
scattered, diffracted, or absorbed.



Radiance Field Modeling Key Principles

e Discretize the 3D space into small pixels: “voxels”
e Aradio wave hits voxels, undergoes attenuation, and breaks into new radio
waves (unevenly towards new directions)
o Attenuation: a function of the voxel itself (e.g., its material)
o Radiance: a function of the voxel and the incoming wave



Radiance Field Modeling Using Neural Network
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Fig. 3: Architecture of the neural network. NeRF? consists of two MLPs, the
attenuation network, and the radiance network. The attenuation network can predict
the attenuation & of any voxel. Given the TX position and a measuring direction, the
radiance network can predict the signal transmitting from an arbitrary voxel.



After knowing how to derive 6 and S, building the trace

The propagation of an RF signal S from a transmitter (TX)
to a receiver (RX) conforms to the Friis equation as follows:

R = Hrx—RxS = arx—RX& RS (2)

from the TX to the RX. Mathematically, a direction w re-
lated to the RX can be modeled as a ray, which starts from
the RX and directs toward w. The points on this ray are
correspondingly described as follows:

P(r,w) = Prx +rw (3)



Electromagnetic Ray Tracing Model

ray. Namely, the received signal at the RX from the direction

) w can be expressed as:
Aggregated signal from the trace:

D
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In the above equation, S(P(r, w), —w) represents the signal
transmitted from the voxel at P(r, w) to the RX at Pgx. Its
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Electromagnetic Ray Tracing Model

Convert to log scale for easy
computation:

Therefore, we have (to a
single RX antenna):
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Visual lllustration
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Fig. 4: Electromagnetic ray tracing. There are five voxels at P; — P5 on the ray. Each voxel becomes a new transmitter that emits the signal along the ray to the RX. Their signals

are attenuated by the other voxels between the new transmitters and the RX.



RX Antenna Model: Single Antenna
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RX Antenna Model: Phase Array

“Sensitivity” of hearing from a particular direction (relative power)
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Fig. 5: Illustration of spatial spectrum



A Mini Benchmark

Ground Truth NeRF? Ray Tracing

Fig. 2: Synthesis of spatial spectrums. The spatial spectrums, also known as the multipath profile, show how strong the RF signal is from a particular direction composed of the
azimuthal and elevation angles. The formal definition refers to Eqn. 12. (a) shows the scene, in which the TX may be located at any position, but the RX equipped with a 4 X 4
antenna array is fixed at a corner; (b) shows the point cloud created by LiDAR, which is only used for the conventional ray-tracing algorithm; (c) compares the synthesis spectrums
generated by different algorithms when the TX is located at four different positions. The ground truth is obtained using the antenna array.




Turbo Learning — Application of NeRF2
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Fig. 6: Illustration of turbo-learning



AoA Estimation Evaluation

e Naive Learning. We use 10% of the true training dataset
(TS, total 8 K) to train the AANN straightforwardly. In this
approach, NeRF? is not involved.

e Turbo-Learning. We use the same 10% of the true dataset
to train the NeRF2. Then, we use the well-trained NeRF?
to generate the rest 90% synthetic dataset (SS). Finally,
the 10% true dataset and the 90% synthetic dataset (i.e.,
turbocharger) are mixed to train the AANN.

Input: TX location — NN — Spatial Spectrum — AOA Profile



AoA Estimation Evaluation
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Fig. 7: CDFs of AoA error. The ANN is trained by the naive-learning (in light blue) and the turbo-learning (in dark red), respectively. We quantify the benefits of NeRF? with
different mixture percentages.
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BLE Localization

Input: TX location — NN — Spatial Spectrum — RSSI

Multiple RSSIs — BLE Localization



BLE Localization
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Fig. 12: The floor plan of the nursing home and deployment of BLE gateways.



MIMO CSI Prediction (FDD)

Input: TX location — NN — Spatial Spectrum — Uplink CSls
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Questions

Do you think the complexity is tractable in complex environments? | think the radio wave number
can go exponential after many scattering.

Let’'s check Perusall.



My Opinion

Surely the work is beautiful and very educational.

| think the computational complexity is highly dependent on the environment. When the environment gets
complicated, the computation will be very intense | guess.

Every training is only for a particular environment. Small change will invalidate the trained network.



