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Background

Robotics and Autonomous systems rely on
accurate sensing and imaging

Traditionally, LIDAR is preferred for
detection and mapping

This paper aims to use RF signals enhanced
by signal processing and and machine
learning for detection and mapping due to
promising resilience against certain
environmental conditions:

O Dust
O Fog
O Smoke

O Poor lighting




Challenges with using RF signals for sensing/imaging

@® Poorresolution of RF sensors vs CMOS
sensor (small array of sensors vs millions of
pixels)

O Limited angular resolution

® Azimuth/Cross-range resolution increases
proportional to aperture of antenna (for a
given wavelength) [1]




Related Work

@® Techniques for imaging using WiFI, RFID,
radars, multi-sensor setups

® Synthetic Aperture Radar (SAR)

@® Planar array emulation using horizontal and
vertical sliders (limited by long scanning time)

@® Circular SAR (mainly used in large static setups)

® 2D CNNs have been used but these do not

develop 3D understanding of the surroundings
@® 3D convolutions have been tried for 3D imaging
but they are inefficient

These methods tried in the past are either not efficient
enough or not well suited for mobile robotics
applications
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Central Design: Rotating Radar

® PanoRadar proposed solution: rotating
vertical array of 8 sensors

O Synthesizes 8x1200 virtual dense o, ’3,?:222;
cylindrical array Sol®Z =T array
® Benefits: R [l e
O Expanded FOV B

“Z virtual antennas

Low cost

O
O Increased mobility
O Fast capture time




Implementation Challenges: External Motion Tracking

® Combination of all the synthetic antenna
requires sub wavelength precision location

information
O Not possible with IMUs or wheel
odometers

® Leveraging RF signals for motion estimation
is problematic due to ambiguity between
Doppler effect and angle of arrival

@® Proposed Solution: incorporate multiple
reflectors and observe radial speed from
different angles




Implementation Challenges: Limited Elevation Resolution

® Problem: There's only 8 antennas along the
vertical axis

® Claim: Indoor environments are more
regular across the vertical dimension

® ML models can also analyze cross
dimensional dependencies to interpolate in
the vertical dimension and enhance the

limited resolution




Implementation Challenges: 3d Learning

® 3D convolution is impractical as voxeling an
(highly imbalanced) indoor space requires
large amounts of memory and processing




Main Contributions

Main contribution is more efficient processing algorithm with
cheaper/cots hardware while maintaining performance for
mobile robotics use cases

1) 3dimaging with rotating radar

2) Motion estimation and compensation
algorithm

3) Vertical and range resolution enhancement
with ML

4) RF for various visual recognition tasks




Cylindrical Array Imaging

h? = height of antenna a

r = radius of antennas

W = angular speed of antennas

B4 = azimuth of imaging direction d
bq = elevation of imaging direction d

S.! = intermediate frequency signals from antenna
aattimet

@® Range FFT to obtain range dimension
@® Limit antenna positions used for

pf = (rcos(wt), rsin(wt), h%).

Location of antenna a at time t

d = (cos ¢4 cos 0y, cos ¢g sin By, sin ¢g).

Desired imaging direction

(1)

(2)
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2D Beamformed Signal



Cylindrical Array Imaging Results

Fine grained azimuth resolution (0.96
degrees for omnidirectional antennas)
Fine grained range resolution (3.75 cm)
Limited elevation resolution (14.2 degrees)
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Figure 4: RF imaging results with a stationary robot, Our beamforming
results capture humans in a rough shape, with limited elevation resolution




Motion Estimation and Mapping

static LIDAR static 0.2 m/s 0.4 m/s
® Moving robot causes inaccuracies in

beamforming due to RF image distortion s
® Proposed Solution: Leverage Doppler effect \
in reflected signals to estimate robot motion
O Complicated due to radar rotation and 7 : ,
. . . Figure 5: Distortion of the imaging results due to robot motion. 2D visual-
robot motion Impacting AoA and izations show that the distortion gets worse as the robot starts to move.
Doppler effects

(2)




Decouple AoA and Doppler Effect

@® Assume antenna rotates with radius r and
angular velocity w along z axis

@® Assume antenna has linear velocity v
(vector)

@® Assume both velocities are constant over
one rotation cycle (0.5s)

dit) = R, = reos(ad = 0,) — ot cos( 8, = 0,), (6)

radar rofation rohast motion

Approximate distance between reflector and antenna at
time t
d'(t,t.) = d(t) + reos(wit. —t)). (7)
Compensated distance at time t

d'(t, 1) = reot{wt. — 8,) — vtcos(f, — 8,) + const., (8)

Approximate compensated distance at time t



Decouple AoA and Doppler Effect

Take slow time FFT of compensated
antenna measurements to vield (9)

. 2
flt) = = |ralwl, — ;) — veos(@, - 85)], ()
.l —_—— —
And Doppler speed

Strongest response appears when antenna
is directly facing reflector

f*=f(1]) = —2vcos(B, — wt.) /A (10)

wt*. indicates direction of reflector
-A\f*/2 indicates Doppler speed
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Figure 6: RF spectrograms showing reflections from a single object. Each
column of the spectrogram represents the slow-time FFT within a window
centered at a specific £.. The line in (b) follows Eqn. (9).

® Use Hough Transform with slope
2w?r/\ to identify lines in
spectrogram



Robust Motion Estimation

® Measurement of AoA and Doppler speed
from just a single reflector cannot accurately
estimate vand 6,
® Note that Doppler speed only reflects radial
speed in direction of reflector and
measurements can be very noisy
® Combining multiple reflectors by
O Use range FFT to isolate reflectors at
various distances
O Multiple reflectors and lines are

detected Jr = =20 cos( Oy, —wt.) /A,

O All peaks fall on
O Speed v and initial phase 6,
® Perform sinusoidal curve fitting
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(a) Compensated spectrograms at different range bins,
range bin 32 range bin 55 range bin 78

frequency

1] azimuth 2m 0 azimuth n 0 aimuth m
(b) Detected lines and peaks from the compensated spectrograms above,

all detections fitted curve ground truth curve
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(c) Sinusoidal curve fitting to estimate the speed and heading direction.

Figure 7: Robust motion estimation with multiple observations. Each line
corresponds to a reflector observed within a certain azimuth window.



Efficient Compensation and Imaging

® Revise beamforming equation to account

for rahnAt mAatinn in v v AlanAa

= +
B::I.Er:EEfuxp(_fan]. {11}
— A

® Combnlexitv
Phase Steering. Using Delay -and-sum [3-'0 65] in our system
would have a computational complexity of (bW ANT).
2D Beamforming. Using beamforming (11) followed by
range FFT has a complexity of O(@0WAN log N).

Consecutive 10 Beamforming. We re-write (11) into:

Bid.5) = ZS; exp {j-lm:ir A D J']."a:'.}.
! (12)
S, = ) STexp (jAmh®sin dy/1).,
&

where &, f; and &° are the first two dimensions of d, p} and
&, respectively. It shows that the compensation in elevation
is independent of that in azimuth. This approach is effec-
tively performing two consecutive steps of 10 beamform-
ing, with a total complexity of O{BDAN + SOWN log N) =
QbW N log N given that W = A,
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Figure 8: RF imaging results with a moving robot with beamforming (top)
and with additional ML-based resolution enhancement (mid). Our motion
estimation and compensation avoid the distortion, resulting in high range
and azimuth resolutions. The 3D learning model further enhances the cle-
vation resolution, showing detailed structures like stairs.
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Enhanced Imaging with ML

® Cross dimensional info such as depth cues
and gravity information potentially allow
CNN resolution enhancement in the vertical
axis
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Figure 8: RF imaging results with a moving robot with beamforming (top)
and with additional ML-based resolution enhancement (mid). Our motion
estimation and compensation avoid the distortion, resulting in high range
and azimuth resolutions. The 3D learning model further enhances the ele-
vation resolution, showing detailed structures like stairs,



Resolution Enhancement with ML

RF and LiDAR data used as inputs and targets
for network training

RF tensors are of size 512 x 64 x 256 (azimuth
X elevation x range)

LiDAR targets are 2D range maps of size 512
X 64

Treat range as channel dimension and
compress sparse signals across range
dimension, enhancing efficiency and
decreasing likelihood of overfitting

Emulation of LIDAR decreases multipath
effects (figure 10)

Glass regions are masked to not misinform
model by incorrect “ground truth” (figure 11)
Use of perceptual loss in addition to L1 loss
also retains higher frequency features (figure
12)
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Figure 9: 3D RF heatmap (top) and the resolution enhancement model
output (middle). To visualize a 3D heatmap, we take the range value of the
peak in cach direction and visualize the 3D heatmap as a 2D image
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Figure 10: PanoRadar learns the first Figure 11: PanoRadar properly han-
reflection under the presence of mul- dles glass regions (bottom, white pix-

tipath interference els) and recovers their depth (top)

while LIDAR fails to do so (middle)
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Figure 12: PanoRadar produces range images with fine-grained details



Visual Recognition with ML

@® An extra convolutional layer is used to predict
surface normal vectors (used in visual
perception tasks like SLAM), with LiDAR used
to derive ground truth for training

® Use of pretrained ResNet-101 to predict 11
semantic classes

® Use of ResNet-101 with Feature Pyramid
Network and Faster R-CNN for object
detection

® Human Localization can be obtained as a
byproduct of object detection
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Figure 13: PanoRadar localizes hu- Figure 14: PanoRadar detects objects
mans on a 2D floor plan. across boundary.



Panoramic Learning & Ground Truth Labels

® Inputimages are inherently panoramic so
utilizing features that cross left and right
boundaries can potentially improve model
@® Panoramic learning can be leveraged by
O Circular padding across azimuth
O Disable bounding box clamping across
azimuth
O Allow loU calculation to account for
cross-boundary bounding boxes
O Modify ROI pooling to first duplicate
feature maps horizontally
@® Ground Truth labels generated in the process
of iteratively training a model and
incorporating manual correction




Implementation & Dataset

TI AWR1843 single-chip mmWave FMCW

4 GHz bandwidth sweep from 77 to 81 GHz
Jetson Nano records raw samples
Resolution enhancement model is structured
into 7 stages each with 4 ResNet blocks
Dataset spans 12 buildings constructed over
the span of a century

® 11,033 synchronized RF and LIDAR data (total
size 461GB after processing)

motor

controller =

Figure 15: Implementation. Left: hardware setup that captures RF signals.
Right: PanoRadar and LiDAR mounted on a mobile robot platform.



Evaluation

Compared against LIDAR ground truth, model
achieves mean absolute error of 15.76 cm
O Point cloud (recovered from RF heatmap)

accuracy is noticeably improved with ML
enhancement

Surface normal estimation: MAE of 8.83 degrees

and median error of 2.17 degrees

Semantic recognition: mloU of 48.00

Object detection: AP30 of 52.33 and AP50 of

38.30 (state of the art AP50 is 60+)

Human Localization: Average error of 12.24 cm

along range and 1.47 degrees along azimuth

Qualitative performance: high quality generated
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Figure 18: The CDF for absolute er-
ror of range image estimation.

Table 3: RF imaging point cloud error with and without machine learning.
(CD: Chamfer Distance, HD: Modified Housdorfl Distance)

CD (2D} CD{3D) HD 2Dy HD3D)
Beamforming only  214em 266 cm 128em  120cm
Beamforming + ML 743cm 6% cm  312cm 3.23cm
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Evaluation

® Motion Estimation Accuracy (max speed 0.6m/s
and avg speed 0.39m/s): 8.48mm/s speed
estimation error and 1.09 direction estimation error

® Imaging Performance relatively robust to motion
estimation

® Imaging performance drops at farther distances

® Circular model maintains performance against all
orientations of image and object detection
performance when bounding box is split across
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Figure 21: Performanoe of visual recognition at different distances: shart

{0=3m), méd (3-trm) and lomg (& 10m).
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Figure 22: The column-wise metrics of circular and non-circular model across 512 azimuth columns for range

estimation, surface normal estimation, and semantic segmentation.

Figure 23: The AP verses split per-
centile in panoramic-rotate test.



Limitations, and Future Work

® Extend PanoRadar to other settings such as
warehouses, malls, driving

@® Repeat approach with better radar and
achieve similar resolution with smaller ML
model

® Work on a method to take advantage of
multipath reflections while learning
efficiently




“Opinion”

@® Generally promising results - some of the results are
not state of the art

® Doesn't seem like there is anything revolutionary
here




Summary of Perusall
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