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● Robotics and Autonomous systems rely on 
accurate sensing and imaging

● Traditionally, LiDAR is preferred for 
detection and mapping

● This paper aims to use RF signals enhanced 
by signal processing and and machine 
learning for detection and mapping due to 
promising resilience against certain 
environmental conditions:

○ Dust
○ Fog
○ Smoke
○ Poor lighting

Background



● Poor resolution of RF sensors vs CMOS 
sensor (small array of sensors vs millions of 
pixels)

○ Limited angular resolution
● Azimuth/Cross-range resolution increases 

proportional to aperture of antenna (for a 
given wavelength) [1]

Challenges with using RF signals for sensing/imaging



● Techniques for imaging using WiFI, RFID, 
radars, multi-sensor setups

● Synthetic Aperture Radar (SAR)
● Planar array emulation using horizontal and 

vertical sliders (limited by long scanning time)
● Circular SAR (mainly used in large static setups)
● 2D CNNs have been used but these do not 

develop 3D understanding of the surroundings
● 3D convolutions have been tried for 3D imaging 

but they are inefficient

These methods tried in the past are either not efficient 
enough or not well suited for mobile robotics 
applications

Related Work



● PanoRadar proposed solution: rotating 
vertical array of 8 sensors

○ Synthesizes 8x1200 virtual dense 
cylindrical array

● Benefits: 
○ Expanded FOV
○ Low cost
○ Increased mobility
○ Fast capture time

Central Design: Rotating Radar



● Combination of all the synthetic antenna 
requires sub wavelength precision location 
information

○ Not possible with IMUs or wheel 
odometers

● Leveraging RF signals for motion estimation 
is problematic due to ambiguity between 
Doppler effect and angle of arrival

● Proposed Solution: incorporate multiple 
reflectors and observe radial speed from 
different angles

Implementation Challenges: External Motion Tracking



● Problem: There’s only 8 antennas along the 
vertical axis

● Claim: Indoor environments are more 
regular across the vertical dimension

● ML models can also analyze cross 
dimensional dependencies to interpolate in 
the vertical dimension and enhance the 
limited resolution

Implementation Challenges: Limited Elevation Resolution



● 3D convolution is impractical as voxeling an 
(highly imbalanced) indoor space requires 
large amounts of memory and processing

Implementation Challenges: 3d Learning



Main contribution is more efficient processing algorithm with 
cheaper/cots hardware while maintaining performance for 
mobile robotics use cases

1) 3d imaging with rotating radar
2) Motion estimation and compensation 

algorithm
3) Vertical and range resolution enhancement 

with ML
4) RF for various visual recognition tasks

Main Contributions



ha = height of antenna a

r = radius of antennas

ω = angular speed of antennas

θd = azimuth of imaging direction d

ϕd = elevation of imaging direction d

Sa
t = intermediate frequency signals from antenna 

a at time t

● Range FFT to obtain range dimension
● Limit antenna positions used for 

Cylindrical Array Imaging

Location of antenna a at time t

Desired imaging direction

2D Beamformed Signal



● Fine grained azimuth resolution (0.96 
degrees for omnidirectional antennas)

● Fine grained range resolution (3.75 cm)
● Limited elevation resolution (14.2 degrees)

Cylindrical Array Imaging Results



● Moving robot causes inaccuracies in 
beamforming due to RF image distortion

● Proposed Solution: Leverage Doppler effect 
in reflected signals to estimate robot motion

○ Complicated due to radar rotation and 
robot motion impacting AoA and 
Doppler effects

Motion Estimation and Mapping



● Assume antenna rotates with radius r and 
angular velocity ω along z axis

● Assume antenna has linear velocity v 
(vector)

● Assume both velocities are constant over 
one rotation cycle (0.5s)

Decouple AoA and Doppler Effect

Approximate distance between reflector and antenna at 
time t

Compensated distance at time t

Approximate compensated distance at time t



● Take slow time FFT of compensated 
antenna measurements to yield (9)

● Strongest response appears when antenna 
is directly facing reflector

● ωt*c indicates direction of reflector
● -λf*/2 indicates Doppler speed

Decouple AoA and Doppler Effect

● Use Hough Transform with slope 
2ω2r/λ to identify lines in 
spectrogram



● Measurement of AoA and Doppler speed 
from just a single reflector cannot accurately 
estimate v and θv

● Note that Doppler speed only reflects radial 
speed in direction of reflector and 
measurements can be very noisy

● Combining multiple reflectors by
○ Use range FFT to isolate reflectors at 

various distances
○ Multiple reflectors and lines are 

detected
○ All peaks fall on
○ Speed v and initial phase θv

● Perform sinusoidal curve fitting

Robust Motion Estimation



● Revise beamforming equation to account 
for robot motion in x-y plane

● Complexity

Efficient Compensation and Imaging



● Cross dimensional info such as depth cues 
and gravity information potentially allow 
CNN resolution enhancement in the vertical 
axis

Enhanced Imaging with ML



● RF and LiDAR data used as inputs and targets 
for network training

● RF tensors are of size 512 x 64 x 256 (azimuth 
x elevation x range)

● LiDAR targets are 2D range maps of size 512 
x 64

● Treat range as channel dimension and 
compress sparse signals across range 
dimension, enhancing efficiency and 
decreasing likelihood of overfitting

● Emulation of LiDAR decreases multipath 
effects (figure 10)

● Glass regions are masked to not misinform 
model by incorrect “ground truth” (figure 11)

● Use of perceptual loss in addition to L1 loss 
also retains higher frequency features (figure 
12)

Resolution Enhancement with ML



● An extra convolutional layer is used to predict 
surface normal vectors (used in visual 
perception tasks like SLAM), with LiDAR used 
to derive ground truth for training

● Use of pretrained ResNet-101 to predict 11 
semantic classes

● Use of ResNet-101 with Feature Pyramid 
Network and Faster R-CNN for object 
detection

● Human Localization can be obtained as a 
byproduct of object detection

Visual Recognition with ML



● Input images are inherently panoramic so 
utilizing features that cross left and right 
boundaries can potentially improve model

● Panoramic learning can be leveraged by
○ Circular padding across azimuth
○ Disable bounding box clamping across 

azimuth
○ Allow IoU calculation to account for 

cross-boundary bounding boxes
○ Modify ROI pooling to first duplicate 

feature maps horizontally
● Ground Truth labels generated in the process 

of iteratively training a model and 
incorporating manual correction

Panoramic Learning & Ground Truth Labels



● TI AWR1843 single-chip mmWave FMCW
● 4 GHz bandwidth sweep from 77 to 81 GHz
● Jetson Nano records raw samples
● Resolution enhancement model is structured 

into 7 stages each with 4 ResNet blocks
● Dataset spans 12 buildings constructed over 

the span of a century
● 11,033 synchronized RF and LiDAR data (total 

size 461GB after processing)

Implementation & Dataset



● Compared against LiDAR ground truth, model 
achieves mean absolute error of 15.76 cm

○ Point cloud (recovered from RF heatmap) 
accuracy is noticeably improved with ML 
enhancement

● Surface normal estimation: MAE of 8.83 degrees 
and median error of 2.17 degrees

● Semantic recognition: mIoU of 48.00
● Object detection: AP30 of 52.33 and AP50 of 

38.30 (state of the art AP50 is 60+)
● Human Localization: Average error of 12.24 cm 

along range and 1.47 degrees along azimuth
● Qualitative performance: high quality generated 

images without some of the poor LiDAR artifacts

Evaluation



● Motion Estimation Accuracy (max speed 0.6m/s 
and avg speed 0.39m/s): 8.48mm/s speed 
estimation error and 1.09 direction estimation error

● Imaging Performance relatively robust to motion 
estimation

● Imaging performance drops at farther distances
● Circular model maintains performance against all 

orientations of image and object detection 
performance when bounding box is split across 
boundary

Evaluation



● Extend PanoRadar to other settings such as 
warehouses, malls, driving

● Repeat approach with better radar and 
achieve similar resolution with smaller ML 
model

● Work on a method to take advantage of 
multipath reflections while learning 
efficiently

Limitations, and Future Work



● Generally promising results - some of the results are 
not state of the art

● Doesn’t seem like there is anything revolutionary 
here

“Opinion”



https://app.perusall.com/courses/cos597e_f2025-advanced-
topics-in-computer-science-neural-sensing-modeling-and-
understanding/panoradar

Summary of Perusall
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