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Background



Accident Reconstruction

Most traffic accidents results are
from police officer

If run into legal dispute -> employ a
certified accident reconstructionist

- Assessment of damage

- Reports of witness T
- Crash recorders for speed, -
throttle, position, etc. S
-> virtual video that recreates the - e Ew
approximate scene ) | =

[1] https://www.patrickdaniellaw.com/blog/accident-reconstructionist/
[2] hitps://ivanmacella.com/en/whatraffic-collision-reconstruction-mean/

[3] https://www.atlantaeng.com/3daccidentsimulations.html
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3D traffic reconstruction pipeline

Downstream tasks:

‘ Accident reconstruction,
traffic analytics, model
training, cooperation, etc.

Volumetric videos:
‘ 3D time evolution
of traffic

Frame: traffic participants
+ surrounding scene

[1] http://www.designwareinc.com/3d_anim.htm
[2] Vehicle-to-Everything Cooperative Perception for Autonomous Driving; Huang et al.



Requirements for 3D traffic reconstruction

Accuracy
a. Reconstruction error: average distance between a
point in reconstructed point cloud and that in the
ground-truth point cloud
b. Requirement: Autonomous vehicles can position
themselves within 10-20 cm via sensors

Coverage
a. As large a spatial region with the accuracies above as
possible for longer time duration of trajectories
Time-to-reconstruction
a. Police officer use reconstruction for the accident report
b. Average responde times >10mins
Non-reliance on HD Maps
a. High cost of collecting and updating HD maps over
large spatial areas
i. Hardware: cost $200k-300k sensor vans
ii. Streaming requirements: 7+ figures per update
iii. Time cost: weeks of update cycles for roads /TN, Wheel Encoder
change(work zones, lane shifts, etc.) '

[1https://www.autonomousvehicleinternational.com/features/the-road-to-everywhere-are-hd-maps-for-autonomous-driving-sustainable.html



Sensors for vehicle traffic reconstruction

(b) (c) (d)

FIGURE 2: (a) Point cloud from ColMap. Moving objects (e.g., vehicles or pedestrians) are absent in the point cloud. (b) Point cloud from
GPS+IMU pose (error: 1.13m). (¢) Point cloud from HD map positioning (error: 20cm). Both (b) and (¢) have blurry alignments while (b) 1s
worse than (¢). (d) Ground-truth point cloud.

Photogrammetry. CARLA simulator + ColMap photogrammetry tool -> works for static objects
but not moving objects + long processing time(4 hours for 115 images from one vehicle)

GPS+IMU: Transform lidar points into the GPS coordination -> fast(™1 min), sub-meter error
HD Maps: Mentioned in the previous slide



Promising approach-Point clouds registration

OVERLAP

[1] https:/www.thinkautonomous.ai/blog/point-cloud-registration/



Point clouds registration Gont.

Input: Two point clouds, A (source) and B (target).
Initialize: Start with an initial guess of the transformation T, ¥
Iterate: >
a. Correspondence: For every pointin A, find its closest
point in B (within overlap region).
b. Alignment: Compute the rigid transform T that
minimizes the mean squared distance between pairs.
c. Update: Apply new T to A & repeat until convergence.
Output: The final transformation T* that best aligns A to B.

[1] https:/learnopencv.com/iterative-clos est-point-icp-explained/
[2] https://graphics.stanford.e du/~smr/1CP/comparison/chen-medioni-align-rob 91. pdf



Iteratlve Closest Point

Comparison of point-to-point and point-to-plane error metric

Point-to-point / lteration 20 Point-to-plane / lteration 20

@® LearnopenCV.com



Challenges

How to find the overlapping area in the point clouds quickly
How to ensure the low delay of streaming toward cloud
How to ensure the overall time and hardware cost is low
How to enable larger spatial coverage

AN
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[1 Octree-based Point-Cloud Compression; Schnabel et al.

Pose Estimator

Either GPS+IMU+Kalman filter(continuously
estimate the state of a system)

Or HD-LiDAR map matching(feeds HD maps
into the pretrained ICP) + fast registration
algorithm

Compression

Ouster OS1-64 LiDAR generates 10 point clouds
per second -> 240Mbps

Octree-based point-cloud compression ->
“10OMbps; later avg 20Mbps, max 34Mbps
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Overlap-scoped Registration

Before alignment, crops all point that’s below a height A
from the LiDAR sensor
For two point cloud p; and p;:
- Setnominal LIDAR range r
- Forevery p, if there’s at least one pointin p; within
threshold &. OR it lies within r of vehicle j, then it’s a
potential correspondence
- Add each potential correspondence q; into g (i’s
overlapped point cloud with j)
- Similarly, compute q;;
- Apply the ICP to g;; and q;, output new T*
After alignment, generate fused point clouds with new T
using original point clouds to recover the cropped objects

(a) 0.07 m (b) 2.28 m (¢)0.32m
FIGURE 4: Importance of overlap. (a) ICP applied to two point
clouds with high overlap. The number below the figure shows re-
construction error (lower is better). (b) ICP applied to two point
clouds with minimal overlap, resulting in high error. (¢) ICP applied
to two minimally overlapped point clouds after using overlap-scoped
registration, resulting in lower error.



Overlap-scoped Registration Gont.

Vehicles: X, Y; Pedestrians: A, B, C

Range of X: {A, C}; Range of Y: {B, C}

Output: Relative positions of pedestrians & Denser point cloud for C

Limitations: Loss of Coverage

as vehicles move aways from each other, deg of overlap decreases to O quickly.
"




Temporal Expansion

Backward expansion:

If vehicles overlapped in the past (at t' <),
fuse frames from [t’, ] to expand the
vehicle now far away.

Forward expansion:

If they will overlap in the near future (t’ > t),
pre-fuse frames from [t,t']. RECAP does not
expand if they never meet

P.S. Still apply small object removal before
expansion

(a) (b)
FIGURE 6: (a) When two vehicles (X, Y) are far away, RECAP
can expand Y's point cloud across time, then align it with X’s point
cloud. (b) In the composite point cloud, RECAP can find the relative
positions of A, B and C after temporal expansion.

(a) Before
FIGURE 7: Before and after temporal expansion of vehicle Y.



Temporal Expansion Gont.

Focus on one vehicle(e.g. Y) that
produces a sequence of LiDAR frame

over time: {ps, Pa, ... ,Pn}

Start with first frame py: line 1
If the two frames overlap enough -> skip

When overlap drops:

- Take the furthest frame that still

overlapped p;,

- Run ICP between pe and py4

- Fuse

Then move the reference forward

Algorithm 1: Efficient Temporal Expansion

Input : A sequence of successive point clouds {p, - -

a single vehicle.

“, pn} from

Output: A fused point cloud ppr which combines the input point

.": *

e =

= i da

9

10
1n end

clouds.

ie— 1, je—i+]1, ppe p.
while i < n do

if ¢; ; = p then
je=j+1;
continue;
end

reaches the nd, run th

if j>nthen j=n+1:

pr — fuse(p;_,, ransform(pp, T));
fe—j—=1,j—i+1;
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ICP & Expansion

- Extract overlapped point clouds g;; and q;; (overlap-scoped registration)
- If the count of potential correspondences is more than p, run ICP between g;;
and q;; without expansion.

- Else

- ifiand j met at time t'(past or future), expand p; and p; till/from time t’
- ifthe expanded point clouds have sufficient potential correspondences, run overlap-scoped
registration on the expanded point clouds.



Multi-way Registration

Motivation: After all pairwise ICPs, some alignments are accurate but some are noisy
-> poor reconstruction if we feed all of them into global coordination
Participant Selection:

1. For every pair(i)j), check number of correspondences c;.

If ¢, >l keep edge; else, drop the edge

2. Build graph: nodes=vehicles, edges=reliable ICP links

3. Find maximum clique-the largest fully connected subset of vehicles-as participants.
Multi-way Registration
Form pose graph:

- Node i: unknown global pose of vehicle i

- Edge (i,j): known relative transform T,; from pairwise ICP.
Define error term for each edge and solve the optimization problem -> set of global
transformations T, that minimize total misalignment






Software:

- Point Cloud Library for pairwise ICP and Open3D for pose graph optimization

- SensorLog to collect GPS and gyroscope data

- CARLA simulator for realistic traffic environment, participants behavior, and sensors from traces
Hardwares:

- Intel iI9-9900K CPU(16 cores, 3.6GHz)

- Ouster OS0-64 or OS1-64, GPS and gyroscope on each vehicle

- Xsens GNSS MTi-680G RTK for ground-truth pose
Scenarios

- 4-way intersection, T-junction, roundabout

- Num of vehicles: 3-13 for each; three rounds with randomized traffic flow for each
Baselines:

- GPS+IMU

- GPS+IMU+KF

- HDMap

- Different ICP optimization approaches: SAC-IA, FGR, Go-ICP



3D TRAFFIC RECONSTRUCTION l-l-WA"? ?FJ ?ﬁ"ﬁ??&uoﬂ

_CARLA SIMULATOR _CARLA SIMULATOR

ROUNDABOUT T-JUNCTION


http://www.youtube.com/watch?v=SSTa3OhqiO4
http://www.youtube.com/watch?v=GYJVb7dXySE
http://www.youtube.com/watch?v=Fo2yf0gCEEo
http://www.youtube.com/watch?v=JzXENWnHOiQ

OFF-CAMPUS (E)

REALWORLD

OFF-CAMPUS (D)



http://www.youtube.com/watch?v=7eDnahDe4AY
http://www.youtube.com/watch?v=BiUr2Z80QdU

# of Vehicles
Scheme 3 5 7 9 11 13
SAC-IA 2,50 | 8.16 | 8.08 | 837 870 | 9.02
FGR 322 | 6.89 | 6.54 | 7.84 7.81 947
Go-1CP 282 | 776 | 747 | 7.68  7.97 | 9.27
GPS+IMU 095 1.10 ] 1.14 | 1.18 1.14 1.23
GPS+IMU+KF | 062 | 0.68 | 0.69 | 0.71 0.68 0.83
HDMap 0.14 | 0.19 | 0.20 | 0.27 0.22 040
RECAP 007 | 010 ] 0.12 | 0.13 0.12  0.15
TABLE 3: Avg. reconstruction error (m) of RECAP and baselines.
| Real-world Trace A B C D E
| Avg. Reconstruction Error (m) | 0.17 | 0.26 | 0.21 | 0.15 | 0.23

TABLE 4: Avg. reconstruction error (m) from five real-world traces.

# of Vehicles
Scene Type 5 7 9 11 13
4-way Intersection | 0.07 | 0.10 | 0.12 | 0.13 | 0.12 | O.15
T-junction 0.12 | 0.10 | 0.14 | 0.15 | 0.11 | 0.11
Roundabout 0.06 | 0.10 | 0.12 | 0.10 | 0.09 | 0.07

TABLE 5: Avg. reconstruction error (m) for different traffic scenes.



Component # of Vehicles
po 3 7 13
Overlap + Expansion (p) 1004.51 | 2709.54 | 7100.13
Pairwise ICP (p) 345.19 | 441.78 | 556.24
Decompression (v) 76.10 81.29 88.75
Initial Guess + Crop (v) 1.99 2.29 2.55
Selection + Pose Optimization 1.14 1.50 2.55
Total 1428.94 | 3236.40 | 7750.22
TABLE 6: Avg. latency per frame for each components (ms).
# of Vehicles |
Scene Type 3 _ 7 ‘ 13 |
4-way Intersection | 3.65(2.24) | 10.13(2.84) | 15.33(3.11)
T-junction 4.771(2.30) | 8.47(2.99) | 21.39(6.32) |
Roundabout 2.30(2.17) | 5.66(3.26) | 14.97 (5.61)

TABLE 7: Avg. time-to-reconstruction (minutes) for 150 frames.

| # of Vehicles 3 7 | 13 | #of Vehicles 3 | 7 13
With Overlap  3.65 10.13 | 15.33 With Expansion | 7,387 | 10,568 | 12,434
Without Overlap = 5.47 17.48 | 19.54 Without Expansion = 5,928 | 6,647 | 7,754

TABLE 8: Avg. time-to-reconstruction (minutes) with and withnutTAm‘E 9: Avg. spatial coverage (m.?] with and without expansion.
overlap extraction.
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FIGURE 8: Avg. reconstruction error (m) with and without (a) overlap-scoped registration, (b)
temporal expansion, and (c) participant selection.

# of Vehicles 3 7 13

HD Map Positioning | 0.09 | 0.15 | 0.18
GPS+KF Positioning | 0.07 | 0.12 | 0.15

TABLE 13: Reconstruction error using HD maps as an initial guess.

I 2000 3500 | 5000 | 6500 | 8000
Reconstruction Error (m) | 0.15  0.13 | 0.11 | 0.09 | 0.08
# of Participants 7 6 6 4 &

TABLE 12: Reconstruction error and the number of participants
varying the threshold p. We use 5000 for p.



EFuture Works
& Opinions



Limitations

1. Time synchronization: RECAP uses NTP ->10ms clock offset for 40mph vehicle
->18cm displacement error

2. Memory and storage overhead when operate in real-world

No LTE exist, like lone underground tunnel (as Raheem mentioned)

4. Near realtime reconstruction by using accelerators(e.g. GPU)

w



1. Great paper overall
a. Nice story, research question, explanation, etc.
b. Cool work with comprehensive experiments
2. Non-practical for real-world application recently
a. Strong assumption of 5G deployment on V2X
b. Memory & storage issue

c. Cost: as far as | know, the cost of lidar system is less than $1500 over the world; but OS0-64 &
0S1-64/128 will take more than $10,000 at least



Perusall
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