SLNet: A Spectrogram
Learning Neural Network for
Deep Wireless Sensing

Presentor: Kechen Liu



The limitations in vision systems
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Despite being effective, CV technologies still has
limitations regarding occlusions and privacy leakage.



Conventional DL-based wireless sensing

& @ TD

ML QL

Signal
collection

Feature Feature .
extraction classification (1) Non-visual
(2) Complex
Not tailored for RF signals (3)  high-dimensional

Preprocessing

How to design specific deep neural networks for wireless signals?



The chance in wireless signals
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Primer:Pre-processing of RF data

Measured CSI:
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STFT processing:
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Challenges in wireless sensing

FT in theory
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Spectral leackage

Practical Fourier transform gives an approximated while blurred version
of the expected spectrograms.



Challenges in wireless sensing

Spectral leackage can be mitigated by window functions.
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Frequency resolution and amplitude resolution can hardly be balanced.



Challenges in wireless sensing

The interference caused by spectral leackage is unstable.
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Different initial phase cause different interference patterns.
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How to restore the ideal spectrums from the unpredictable interference?



Complex-valued neural network
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SLnet architecture
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Figure 3: Overview of SLNET. The temporal CSI signal is transformed into spectrograms via a bank of STFT oper-
ators with different temporal and frequency resolutions. Each spectrogram is fed into the SEN to remove spectral
leakage. Then, a hologram of spectrograms is generated by stacking all enhanced spectrograms and modulating
them with linear phases. Next, the hologram is processed with the PCN to generate feature maps, and the com-
pression networks to generate abstract features for specific learning tasks.
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3.1 learning-assisted spectrogram enhancement
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SEN results

Frequency components are more distinguishable after SEN enhancement.
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Figure 6: Illustration of the spectrogram of a push-
ing and pulling gesture. (a) The measured spectrogram
and (b) the enhanced spectrogram from SEN.



3.2 multi-resolutions spectrogram fusions

STFTs at multiple window sizes — SEN per window — Stack channels =
“hologram” — (Pipeline) phase modulation — PCN
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Challenges in deep learning
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CNN is tailored for images since it is Wireless signals require global
invariant to shifts. discriminations.



3.3 task-adaptive network

Phase polarized feature extraction
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Complex-valued neural network
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Review of the overall architecture
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Figure 3: Overview of SLNET. The temporal CSI signal is transformed into spectrograms via a bank of STFT oper-
ators with different temporal and frequency resolutions. Each spectrogram is fed into the SEN to remove spectral
leakage. Then, a hologram of spectrograms is generated by stacking all enhanced spectrograms and modulating
them with linear phases. Next, the hologram is processed with the PCN to generate feature maps, and the com-
pression networks to generate abstract features for specific learning tasks.
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Feature compression

After PCN, a compact head reduces dimensionality and adapts to tasks:

1. Complex FC + tanh,
2. Magnitude (absolute value) bridge to real domain,

3. Real FC + ReLU, then optional task-specific layers (e.g., softmax for N-way
gesture classes or sigmoid for fall probability)



Experiment setup
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Figure 9: Experimental settings established in SLNET. (a) Classroom for gesture recognition. (b) Hall for gait iden-
tification. (c) Apartment for fall detection. (d) Office for breath estimation.



Performance—Human gestures
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Performance—human breadth
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Performance-Recognition tasks

Modality Ref. Gesture Gait Fall’ Para®
[23,90] 90.6% 95.1% 92.8%,96.3% 1.07M
WiFi [8,22] 89.0% 96.6% 96.4%,84.3% 2.72M
[39,79] 84.3% 83.3% 96.8%,93.8% 5.77TM
[73]° 78.9% 70.9% 95.5% 96.8% 0.06M
[87] 88.0% 954% 96.0% 96.0% 1.06M
FMCW
[84,86] 91.6% 96.4% 99.7%,95.7% 2.76M
Acoustic  [30] 89.6% 95.4% 90.6%,98.3% 6.08M F
[40] 88.3% 90.1% 95.3%, 95.3% 128.8M D
Vision [15] 91.9% 96.6% 97.0% 95.6% 11.18M A
[20] 91.0% 97.7% 99.8%, 96.3% 6.96M E Sensing
B
C

[17,32] 723% 96.0% 95.2% 93.7% 115.6M i gl
15 6ol ‘

Bette

Top-1 accuracy [%]

& [46] 92.0% 96.3% 98.4%,93.8% 2.94M
WiFi SLNET 96.6% 98.9% 99.8%,97.2% 1.48M Yy B 0 " & & s
Table 2: Comparison against 12 baseline models. ' The #Operations [G-Ops]

two metrics are precision and recall. ? Number of parameters
in Million. ? Trained with 10,000 epochs to converge.



Questions

Let’'s check Perusall comments!



My thoughts

Synthetic SEN training: Real hardware has quirks (CFO, 1/Q imbalance). Will SEN
still help if those don’t match the simulator?

Generalization: Accuracy drops in new rooms/users—how robust is it across
layouts and day-to-day variation?

Hyperparameters: The “phase polarization” strength seems important—how
sensitive are results to that choice?



