EdgeRIC: Empowering Realtime Intelligent Optimization and Control in NextG Cellular Networks

Presenter: Xuyang Cao • 09.13.2024

Background

RAN Intelligence Control (RIC) is a promising approach, yet current cloud-based design creates a non-real-time loop, causing delayed and coarse control.

RAN TTI is one slot: 62.5 µsec to 1 msec

EdgeRIC

EdgeRIC: a mid layer between RAN and cloud-based central control.

- Physically close to RAN
- Disaggregated
- Ensure the control loop < 1ms
- Decoupled from RAN
- (Optional) ML-driven control

Motivation and contribution

Motivations

- Timely and fine-grained control
- ms-level channel dynamics
- Control loop can be nicely fit into RL

Contributions

- TTI-level sync between EdgeRIC and RAN
- RL on the control + an emulator for offline training
- Open-sourced

Relevant work

Framework	Connectivity	Monitoring	Application	Adaptability to	Full stack AI training	Real World
	to RAN stack	and control	awareness	channel fluctuations	support with real traces	OTA evaluations
FlexRIC [35]	Disaggregated	10ms-1s	\checkmark	×	×	×
ColO-RAN [32]	Disaggregated	10ms-1s	\checkmark	×	×	×
dApps [7]	Disaggregated	6-10ms	×	\checkmark	×	×
Janus [10]	Integrated	<1ms	×	\checkmark	×	\checkmark
EdgeRIC	Disaggregated	<1mc	\checkmark	\checkmark	\checkmark	\checkmark

EdgeNIC architecture

Highlights:

- Redis DB
- RT-E2 messaging
- Gym interface
- Async Logging
- EdgeRIC emulator and RL

EdgeNIC architecture (continued)

Redis: in-memory cache for adapted policy from cloud

RT-E2 Messaging between RAN and EdgeRIC

- An application-level messaging technique/choice?
 - Use ZMQ library
 - Still over TCP/UDP/SCTP
- TTI-sync
 - Ground-truth RAN maintains RANtime
 - Ideally, EdgeRIC sends command with RANtime + 1 label
 - RAN retains only most recent messages and disregard any not matching current *RANtime*

Let's just go through a quick example...

RT-E2 example

RAN's tracked current RANtime: 10

If it receives:

- Command with RANtime 9
 - Discard
- Command with RANtime 10
 - Execute the command
- Command with RANtime 11
 - Retain but disregard at this moment

Figure 5: TTI-level events for EdgeRIC to RAN loop.

Also,

- EdgeRIC to RAN subscription: blocking
- RAN to EdgeRIC subscription: non-blocking

EdgeNIC architecture (continued)

 μApp : essentially execute a specific policy

- RL PPO policy (talks later)
- CQI-Fair Allocation
 w_i[t] = CQI_i[t]
- Proportionally-Fair Allocation $\circ w_i[t] = CQI_i[t]/AvgCQI_i[t]$
- Max-weight Allocation $\circ w_i[t] = CQI_i[t]B_i[t]$

Table 3: Load: 35Mbps, Channel: 2 UE synthetic channel

		EdgeRIC	15ms	30ms
Max CQI	Avg. Thrpt.	32.6	24.2	18.0
	BL[MB]	0.61	0.64	0.57
Prop. Fair.	Avg. Thrpt.	30.7	25.7	21.9
	BL[MB]	0.65	0.67	0.68
Max Weight	Avg. Thrpt.	30.0	23.3	20.9
	BL[MB]	0.60	0.62	0.65

PPO RL is not absolutely winning

Emulator and RL training loop

Table 2: RL Specifications: Throughput Maximization

State $(s[t])$	$B_i[t], CQI_i[t] \ \forall i$
Action $(a[t])$	$w_i[t] \ orall i$
Reward $(r[t])$	total throughput

Emulator and RL training loop example

Collected CQI traces: 14,13,12,13,14,15,15,11,10,9,10,12,15,15,10,9,12,15,15...

Run the emulator and PPO training...

Slot 1: {CQI(UE1) 14, Backlog(UE1) 0.1MB, reward 12Mbps} sends to Gym interface; Gym gives action of weight(UE1) being 60%. **Slot 2**: UE1 is given 60% PRBs. {CQI(UE1) 13, Backlog(UE1) 0.3MB, reward 14Mbps} sends to Gym; Gym gives action of weight(UE1) being 50%. **Slot 3**: ...

RL training and performance

"100 iterations, equivalent to 500,000 TTI samples." "Total training completes in about ten minutes"

Might not work for SCS30KHz where slot = 0.5ms for their current configuration

To bridge the sim-to-real gap

Evaluation

Table 4: Summary of all scenarios

Scenario	Channel Description		
Channel Traces from Experiments			
Scenario 1	2 Drone UEs		
Scenario 2	2 Turntable UEs		
Scenario 3	2 Car UEs and 2 Drone UEs		
Scenario 4	2 Car UEs and 2 Indoor Robotic UEs		
Scenario 5	2 Random Walk UEs and 2 Turntable UEs		
Complete Over-the-Air Experiments			
Scenario 6	2 UEs on indoor mobile robots		
Scenario 7	2 UEs on indoor stationary robots		

Trace-driven emulation and Over-the-Air real tests

Setup:

- Intel Xeon Gold 5218R CPU @ 2.10GHz, 20 cores
- Intel i9 CPU @ 2.4GHz, 12 cores
- both without using GPUs

For OTA:

- One X310 as the base station
- Two B210s as the UEs

(a) Turntable

(b) Car

(c) Drone

Where they collected

— traces

(d) Mobile Robot

Evaluation (continued)

Evaluate RT latency is important rather than cloud-based approach (emulation)

ole 5: Load: 3	5Mbps, Cha	nnel Trace	: 4 Tui	ntable U
		EdgeRIC	50ms	100ms
Max CQI	Avg. Thrpt.	33.4	21.2	29.5
	BL[MB]	1.34	0.84	1.12
Prop. Fair.	Avg. Thrpt.	28.6	26.6	23.5
	BL[MB]	1.20	1.29	0.93
Max Weight	Avg. Thrpt.	33.2	28.8	31.0
	BL[MB]	1.14	1.30	1.12

iPerf setup might introduce noise?

a) Is real-time needed?

Evaluation (continued)

Then a holistic evaluation

Table 6: Throughput and Backlog Buffer Evaluation

	PPO	Max Weight	Max CQI		
Realistic Channel Traces					
Scenario 1	29.1/0.38	26.1/0.53	14.9/0.39		
Scenario 2	30.5/ 0.38	31.9 /0.43	14.42/0.39		
Scenario 3	25.3 /1.5	22.9/1.3	18.67/ 0.97		
Scenario 4	25.9 /1.5	23.9/1.21	20.3/1.05		
Scenario 5	28.5/0.96	26.3/1.46	23.3/1.01		
Over the Air Experiments					
Scenario 6	14.6/0.19	6.4/0.45	5.7/0.44		
Scenario 7	19.33/0.05	10.71/0.34	9.06/0.35		

d) Does EdgeRIC work in real world?

. •

Max Weight is close to PPO perf. How many rounds they repeated for each case for each technique?

c) Is RL generalizable?

Throughput Evaluation

Max Weight

Max CQI

App-aware RAN/cross-layer optimization

Table 7: RL specifications: Video Streaming		
State (s[t])	$B_i[t], CQI_i[t], MB_i[\bullet] \forall i$	
Action $(a[t])$	$w_i[t] \forall i$	
Reward $(\sum_i r_i[t])$	$r_i[t] = \begin{cases} -20, & \text{if } MB_i[t] < 2 \text{ sec} \\ +2, & \text{otherwise} \end{cases} \forall i$	

- Media buffer data length

Test setup: 2 video watchers and 2 iPerf users

Q: while the RL focus on optimizing for video streaming, how about the iPerf users? They are legit users as well...

Appendix (good insights)

Opinion

- The paper's motivation and architecture design is robust and good to me
 E.g., RL loop; flow of each component; low-latency messaging
- The use of ZMQ and advertisement is a little over-marketing
 Not something original; a messaging service choice at the application-level
- Had questions about their evaluations
 - Seems each result is from a single run; how many they repeated?
 - Also the gain is not decisive
- They claimed RT-E2 latency is sub-millisecond. They evaluated EdgeRIC and RAN on the same host. Every computer can achieve localhost ping <1ms latency...

Discussion (deep dive)

Let's look at Perusall.

How do you think of the overall architecture to achieve low latency?

How do you think of the RL design?

How do you think of the evaluation?

Conclusion

- RIC is a promising technique controlling RAN. Now the cloud-based approaches impose unbearable high latency.
- They introduce EdgeRIC, which puts the RIC on the edge, preferably co-located with RAN.
- The control loop can be nicely represented as a RL feedback loop. They tried PPO-based RL with EdgeRIC.
- Evaluations show EdgeRIC's low latency is crucial; the RL policy is also beneficial.