
Internet Congestion Control
(1988-2024): A Primer

COS 597S: Recent Advances in Wireless Networks
Fall 2024

Kyle Jamieson

Transport Layer: Context & Motivation

• Most applications want to exchange messages between
different remote processes

• Further, many applications want a reliable stream of bytes
between different remote processes

2

Best-effort local packet delivery

Best-effort global packet delivery

Reliable streams

Applications

Messages

Link Layer (L2)

Network Layer (L3)

Transport Layer (L4)

Application Layer (L7)

Transport Protocols
• Provide logical communication between

remote application processes
– Sender application divides a message into
segments

– Receiver application reassembles segments into
message

• Transport layer services
– (De)multiplexing packets
– Detecting corrupted data
– Optional: reliable byte stream delivery, flow

control, congestion avoidance…

3

Transmission Control Protocol (TCP)

• Reliable byte stream service
– all data reach receiver: in

order they were sent, with no
data corrupted

• Reliable, in-order delivery
– Corruption: checksums
– Detect loss/reordering:

sequence numbers
– Reliable delivery:

acknowledgments and
retransmissions

• Connection oriented
– Explicit set-up and tear-

down of TCP connection

• Flow control
– Prevent overflow of the

receiver’s buffer space

• Congestion control
– Adapt to network congestion

for greater good

4

5

Fundamental Problem: Estimating RTT

• Round-Trip Time (RTT): end-to-end delay for data
to reach receiver + ACK to reach sender, including:
– propagation delay on links
– serialization delay at each hop
– queuing delay at routers

• Design alternative: use fixed timer (e.g., 250 ms)
– What if the route changes?
– What if congestion at one or more routers?

6

TCP: Retransmit Timeouts
• Sender sets timer for each sent packet

– when ACK returns, timer canceled
– if timer expires before ACK returns, packet resent

• Expected time for ACK to return:
– Round Trip Time (RTT)

• TCP estimates round-trip time using EWMA
– measurements mi from timed packet :: ACK pairs
– RTTi = ((1-α) x RTTi-1 + α x mi)
– Original TCP retransmit timeout:

• RTOi = β × RTTi (original TCP: β = 2)

7

Mean and Variance:
Jacobson’s RTT Estimator

• Above link load of 30% at router, β ×
RTTi will retransmit too early!

• Response to increasing load: waste
bandwidth on duplicate packets

• Result: congestion collapse!

• [Jacobson 88]: estimate vi, mean
deviation (EWMA of |mi – RTTi|), stand-in
for variance
 vi = vi-1 × (1-γ) + γ × |mi-RTTi|

• All modern TCPs: use RTOi = RTTi + 4vi

8

Connection Startup Behavior
• TCP control of window size: Slow Start

• Original TCP, before [Jacobson 88]:
– At connection start, send full window of packets
– retransmit each packet just after timer expires

• Result: window-sized packet bursts sent into network

Pre-Jacobson TCP (Obsolete!)
• Time-sequence plot

taken at sender

• Bursts of packets:
vertical lines

• Spurious retransmits:
repeats at same y-
value (enough buffer
on path)

• Dashed line: available
20 Kbps capacity

9

Send Time (sec)

10

Reaching Equilibrium: Slow Start

• At connection start: sender sets congestion window size,
cwnd, to pktSize, not whole window

• Sender sends up to minimum of receiver’s advertised window
size W and cwnd

• Upon return of each ACK until receiver’s advertised window
size reached, increase cwnd by pktSize bytes

• “Slow” means exponential window increase!

– Takes log2(W/pktSize) RTTs to
 reach receiver’s advertised
 window size W

11

Post-Jacobson TCP: Slow Start and
Mean+Variance RTT Estimator

• Time-sequence plot at sender;
dashed line = available capacity

• “Slower” start
• No spurious retransmits

12

Self-Clocking: Conservation of Packets

• Goal: self-clocking transmission
– each ACK returns, one data packet sent
– spacing of returning ACKs: matches spacing of

packets in time at slowest link on path Pb

13

Today

• Pacing Transmissions
• Slow Start and Self-clocking
• Congestion control
• Learning to Share: Chiu-Jain phase plots
• Modeling Throughput

14

Goals in Congestion Control

• Achieve high link utilization; don’t waste capacity!

• Divide bottleneck link capacity fairly among users

• Be stable: converge to steady allocation among
users

• Avoid congestion collapse

15

Congestion Collapse

• Cliff behavior observed in
[Jacobson 88]

Offered load
(bps)

T
h

ro
u

g
h

p
u

t
(b

p
s
)

Congestion
collapse!

Knee

16

Congestion Requires Slowing Senders

• Recall: big buffers can’t prevent congestion collapse
– Senders must slow down to alleviate congestion. How?
– Absence of ACKs implicitly indicates congestion

• TCP sender’s window size determines sending rate

• How can sender learn the right cwnd?
– Search for it, by adapting window size
– Feedback from network: ACKs
 return (window OK) or do not
 return (window too big)

17

Avoiding Congestion:
Multiplicative Decrease

• Upon timeout for sent packet, sender presumes
packet lost to congestion, and:
– sets ssthresh = cwnd / 2
– sets cwnd = pktSize
– uses slow start to grow cwnd up to ssthresh

• End result: cwnd = cwnd / 2, via slow start

• Sender sends one window per RTT
– Halving cwnd halves transmit rate

18

Avoiding Congestion:
Additive Increase

• No feedback to indicate TCP using less than
its fair share of bottleneck

• Solution: speculatively increase window size
as ACKs return
– Additive increase: for each returning ACK,
 cwnd = cwnd + (pktSize × pktSize)/cwnd

• Increases cwnd by ~pktSize bytes per RTT

Combined algorithm: Additive Increase,
Multiplicative Decrease (AIMD)

19

AIMD in Action

• Sender searches for correct
window size

20

Why AIMD?
• Other control rules possible

– E.g., MIMD, AIAD, …
• Recall goals:

– Links fully utilized (efficient)
– Users share resources fairly

• TCP adapts all flows’ window sizes
independently

• Must choose a control that will always
converge to an efficient and fair allocation of
windows

21

Chiu-Jain Phase Plots
• Consider two users

sharing a bottleneck link
– Plot bandwidths allocated

to each

• Efficiency Line: sum of
two users’ rates =
bottleneck capacity

• Fairness Line: two
users’ rates equal

• Equi-Fairness Line: ratio
of two users’ rates fixed

User 1 offered load
U

se
r

2
o

ff
e

re
d

 lo
a

d

Fairness Line

Overload

Efficiency LineUnderload

Equi-Fairness Line (MI)

Optimum

(AI/AD)

22

Chiu Jain: AIMD

• AIMD converges to optimum efficiency and fairness

Efficiency Line

Fairness Line

23

Chiu Jain: AIAD

• AIAD doesn’t converge to optimum point!
• Similar oscillations for MIMD

Efficiency Line

Fairness Line

24

Summary: TCP and Congestion Control
• Connection establishment and teardown

– Robustness against delayed packets crucial

• Round-trip time estimation
– EWMAs estimate both RTT mean and deviation

• Congestion detection at sender
– Timeout: half window, slow start from one packet
– Fast retx: three dup ACKs, half window, no slow start

• Search for optimal sending window size
– Additive increase, multiplicative decrease (AIMD)
– AIMD converges to high utilization, fair sharing

High Bandwidth-Delay Product

25

• Key Problem: TCP performs poorly when
– The capacity of the network (bandwidth) is large
– The delay (RTT) of the network is large
– Or, when bandwidth * delay is large

• b * d = maximum amount of in-flight data in the network
• a.k.a. the bandwidth-delay product

• Why does TCP perform poorly?
– Slow start and additive increase are slow to converge
– TCP is ACK clocked

• i.e. TCP can only react as quickly as ACKs are received
• Large RTT → ACKs are delayed → TCP is slow to react

TCP CUBIC Implementation
• Default TCP implementation in Linux
• Replace AIMD with cubic function

– B → a constant fraction for multiplicative increase
– T → time since last packet drop
– W_max ➔ cwnd when last packet dropped

26

TCP CUBIC Example

• Less wasted bandwidth due to fast ramp up
• Stable region and slow acceleration help maintain fairness

– Fast ramp up is more aggressive than additive increase
– To be fair to Tahoe/Reno, CUBIC needs to be less aggressive

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

Fast
ramp up

Stable
Region

Slowly accelerate to
probe for bandwidth

Simulations of CUBIC Flows

CUBIC

CUBIC

RenoReno

Recent BBR Performance Studies
• Available in Zotero (“Weeks 3-5 Wireless Cognizant CC” Folder)

• D. Zeynali, E. N. Weyulu, S. Fathalli, B. Chandrasekaran, and A. Feldmann,
“Promises and Potential of BBRv3,” in Passive and Active Measurement, vol.
14538, P. Richter, V. Bajpai, and E. Carisimo, Eds., in Lecture Notes in Computer
Science, vol. 14538. , Cham: Springer Nature Switzerland, 2024, pp. 249–272. doi:
10.1007/978-3-031-56252-5_12.

• Y. Cao, A. Jain, K. Sharma, A. Balasubramanian, and A. Gandhi, “When to use and
when not to use BBR: An empirical analysis and evaluation study,” in
Proceedings of the Internet Measurement Conference, Amsterdam Netherlands:
ACM, Oct. 2019, pp. 130–136. doi: 10.1145/3355369.3355579.

• R. Drucker, G. Baraskar, A. Balasubramanian, and A. Gandhi, “BBR vs. BBRv2: A
Performance Evaluation,” in 2024 16th International Conference on
COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India: IEEE, Jan.
2024, pp. 379–387. doi: 10.1109/COMSNETS59351.2024.10427175.

• S. Vargas, G. Gunapati, A. Gandhi, and A. Balasubramanian, “Are mobiles ready
for BBR?,” in Proceedings of the 22nd ACM Internet Measurement Conference, in
IMC ’22. New York, NY, USA: Association for Computing Machinery, Oct. 2022, pp.
551–559. doi: 10.1145/3517745.3561438.

29

https://doi.org/10.1007/978-3-031-56252-5_12
https://doi.org/10.1145/3355369.3355579
https://doi.org/10.1109/COMSNETS59351.2024.10427175
https://doi.org/10.1145/3517745.3561438

	Slide 1: Internet Congestion Control (1988-2024): A Primer
	Slide 2: Transport Layer: Context & Motivation
	Slide 3: Transport Protocols
	Slide 4: Transmission Control Protocol (TCP)
	Slide 5: Fundamental Problem: Estimating RTT
	Slide 6: TCP: Retransmit Timeouts
	Slide 7: Mean and Variance: Jacobson’s RTT Estimator
	Slide 8: Connection Startup Behavior
	Slide 9: Pre-Jacobson TCP (Obsolete!)
	Slide 10: Reaching Equilibrium: Slow Start
	Slide 11: Post-Jacobson TCP: Slow Start and Mean+Variance RTT Estimator
	Slide 12: Self-Clocking: Conservation of Packets
	Slide 13: Today
	Slide 14: Goals in Congestion Control
	Slide 15: Congestion Collapse
	Slide 16: Congestion Requires Slowing Senders
	Slide 17: Avoiding Congestion: Multiplicative Decrease
	Slide 18: Avoiding Congestion: Additive Increase
	Slide 19: AIMD in Action
	Slide 20: Why AIMD?
	Slide 21: Chiu-Jain Phase Plots
	Slide 22: Chiu Jain: AIMD
	Slide 23: Chiu Jain: AIAD
	Slide 24: Summary: TCP and Congestion Control
	Slide 25: High Bandwidth-Delay Product
	Slide 26: TCP CUBIC Implementation
	Slide 27: TCP CUBIC Example
	Slide 28: Simulations of CUBIC Flows
	Slide 29: Recent BBR Performance Studies

