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Transport Layer: Context & Motivation

• Most applications want to exchange messages between 
different remote processes

• Further, many applications want a reliable stream of bytes 
between different remote processes
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Transport Protocols
• Provide logical communication between 

remote application processes
– Sender application divides a message into 
segments

– Receiver application reassembles segments into 
message 

• Transport layer services
– (De)multiplexing packets
– Detecting corrupted data
– Optional: reliable byte stream delivery, flow 

control, congestion avoidance…
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Transmission Control Protocol (TCP)

• Reliable byte stream service
– all data reach receiver: in 

order they were sent, with no 
data corrupted

• Reliable, in-order delivery
– Corruption: checksums
– Detect loss/reordering: 

sequence numbers
– Reliable delivery: 

acknowledgments and 
retransmissions

• Connection oriented
– Explicit set-up and tear-

down of TCP connection

• Flow control
– Prevent overflow of the 

receiver’s buffer space

• Congestion control
– Adapt to network congestion 

for greater good

4



5

Fundamental Problem: Estimating RTT

• Round-Trip Time (RTT): end-to-end delay for data 
to reach receiver + ACK to reach sender, including:
– propagation delay on links
– serialization delay at each hop
– queuing delay at routers

• Design alternative: use fixed timer (e.g., 250 ms)
– What if the route changes?
– What if congestion at one or more routers?
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TCP: Retransmit Timeouts
• Sender sets timer for each sent packet

– when ACK returns, timer canceled
– if timer expires before ACK returns, packet resent

• Expected time for ACK to return: 
– Round Trip Time (RTT)

• TCP estimates round-trip time using EWMA
– measurements mi from timed packet :: ACK pairs
– RTTi = ((1-α) x RTTi-1 + α x mi)
– Original TCP retransmit timeout:

• RTOi = β × RTTi  (original TCP: β = 2)
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Mean and Variance:
Jacobson’s RTT Estimator

• Above link load of 30% at router, β × 
RTTi will retransmit too early!

• Response to increasing load: waste 
bandwidth on duplicate packets

• Result: congestion collapse!

• [Jacobson 88]: estimate vi, mean 
deviation (EWMA of |mi – RTTi|), stand-in 
for variance
 vi = vi-1 × (1-γ) + γ × |mi-RTTi|

• All modern TCPs: use RTOi = RTTi + 4vi
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Connection Startup Behavior
• TCP control of window size: Slow Start

• Original TCP, before [Jacobson 88]:
– At connection start, send full window of packets
– retransmit each packet just after timer expires

• Result: window-sized packet bursts sent into network



Pre-Jacobson TCP (Obsolete!)
• Time-sequence plot 

taken at sender 

• Bursts of packets: 
vertical lines

• Spurious retransmits: 
repeats at same y-
value (enough buffer 
on path)

• Dashed line: available 
20 Kbps capacity

9

Send Time (sec)



10

Reaching Equilibrium: Slow Start

• At connection start: sender sets congestion window size, 
cwnd, to pktSize, not whole window

• Sender sends up to minimum of receiver’s advertised window 
size W and cwnd

• Upon return of each ACK until receiver’s advertised window 
size reached, increase cwnd by pktSize bytes

• “Slow” means exponential window increase!

– Takes log2(W/pktSize) RTTs to 
     reach receiver’s advertised 
     window size W
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Post-Jacobson TCP: Slow Start and 
Mean+Variance RTT Estimator

• Time-sequence plot at sender; 
dashed line = available capacity

• “Slower” start
• No spurious retransmits
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Self-Clocking: Conservation of Packets

• Goal: self-clocking transmission
– each ACK returns, one data packet sent
– spacing of returning ACKs: matches spacing of 

packets in time at slowest link on path Pb
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Today

• Pacing Transmissions
• Slow Start and Self-clocking
• Congestion control
• Learning to Share: Chiu-Jain phase plots
• Modeling Throughput
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Goals in Congestion Control

• Achieve high link utilization; don’t waste capacity!

• Divide bottleneck link capacity fairly among users

• Be stable: converge to steady allocation among 
users

• Avoid congestion collapse
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Congestion Collapse

• Cliff behavior observed in 
[Jacobson 88]
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Congestion Requires Slowing Senders

• Recall: big buffers can’t prevent congestion collapse
– Senders must slow down to alleviate congestion.  How?
– Absence of ACKs implicitly indicates congestion

• TCP sender’s window size determines sending rate

• How can sender learn the right cwnd?
– Search for it, by adapting window size
– Feedback from network: ACKs 
     return (window OK) or do not 
     return (window too big)
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Avoiding Congestion: 
Multiplicative Decrease

• Upon timeout for sent packet, sender presumes 
packet lost to congestion, and:
– sets ssthresh = cwnd / 2
– sets cwnd = pktSize
– uses slow start to grow cwnd up to ssthresh

• End result: cwnd = cwnd / 2, via slow start

• Sender sends one window per RTT
– Halving cwnd halves transmit rate
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Avoiding Congestion: 
Additive Increase

• No feedback to indicate TCP using less than 
its fair share of bottleneck

• Solution: speculatively increase window size 
as ACKs return
– Additive increase: for each returning ACK,
 cwnd = cwnd + (pktSize × pktSize)/cwnd

• Increases cwnd by ~pktSize bytes per RTT

Combined algorithm: Additive Increase, 
Multiplicative Decrease (AIMD)
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AIMD in Action

• Sender searches for correct 
window size
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Why AIMD?
• Other control rules possible

– E.g., MIMD, AIAD, …
• Recall goals:

– Links fully utilized (efficient)
– Users share resources fairly

• TCP adapts all flows’ window sizes 
independently

• Must choose a control that will always 
converge to an efficient and fair allocation of 
windows
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Chiu-Jain Phase Plots
• Consider two users 

sharing a bottleneck link
– Plot bandwidths allocated 

to each

• Efficiency Line: sum of 
two users’ rates = 
bottleneck capacity

• Fairness Line: two 
users’ rates equal

• Equi-Fairness Line: ratio 
of two users’ rates fixed
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Chiu Jain: AIMD

• AIMD converges to optimum efficiency and fairness

Efficiency Line

Fairness Line
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Chiu Jain: AIAD

• AIAD doesn’t converge to optimum point!
• Similar oscillations for MIMD

Efficiency Line

Fairness Line
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Summary: TCP and Congestion Control
• Connection establishment and teardown

– Robustness against delayed packets crucial

• Round-trip time estimation
– EWMAs estimate both RTT mean and deviation

• Congestion detection at sender
– Timeout: half window, slow start from one packet
– Fast retx: three dup ACKs, half window, no slow start

• Search for optimal sending window size
– Additive increase, multiplicative decrease (AIMD)
– AIMD converges to high utilization, fair sharing



High Bandwidth-Delay Product

25

• Key Problem: TCP performs poorly when
– The capacity of the network (bandwidth) is large
– The delay (RTT) of the network is large
– Or, when bandwidth * delay is large

• b * d = maximum amount of in-flight data in the network
• a.k.a. the bandwidth-delay product

• Why does TCP perform poorly?
– Slow start and additive increase are slow to converge
– TCP is ACK clocked

• i.e. TCP can only react as quickly as ACKs are received
• Large RTT → ACKs are delayed → TCP is slow to react



TCP CUBIC Implementation
• Default TCP implementation in Linux
• Replace AIMD with cubic function

– B → a constant fraction for multiplicative increase
– T → time since last packet drop
– W_max ➔ cwnd when last packet dropped
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TCP CUBIC Example

• Less wasted bandwidth due to fast ramp up
• Stable region and slow acceleration help maintain fairness

– Fast ramp up is more aggressive than additive increase
– To be fair to Tahoe/Reno, CUBIC needs to be less aggressive
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Simulations of CUBIC Flows
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Recent BBR Performance Studies
• Available in Zotero (“Weeks 3-5 Wireless Cognizant CC” Folder)

• D. Zeynali, E. N. Weyulu, S. Fathalli, B. Chandrasekaran, and A. Feldmann, 
“Promises and Potential of BBRv3,” in Passive and Active Measurement, vol. 
14538, P. Richter, V. Bajpai, and E. Carisimo, Eds., in Lecture Notes in Computer 
Science, vol. 14538. , Cham: Springer Nature Switzerland, 2024, pp. 249–272. doi: 
10.1007/978-3-031-56252-5_12.

• Y. Cao, A. Jain, K. Sharma, A. Balasubramanian, and A. Gandhi, “When to use and 
when not to use BBR: An empirical analysis and evaluation study,”  in 
Proceedings of the Internet Measurement Conference, Amsterdam Netherlands: 
ACM, Oct. 2019, pp. 130–136. doi: 10.1145/3355369.3355579.

• R. Drucker, G. Baraskar, A. Balasubramanian, and A. Gandhi, “BBR vs. BBRv2: A 
Performance Evaluation,” in 2024 16th International Conference on 
COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India: IEEE, Jan. 
2024, pp. 379–387. doi: 10.1109/COMSNETS59351.2024.10427175.

• S. Vargas, G. Gunapati, A. Gandhi, and A. Balasubramanian, “Are mobiles ready 
for BBR?,” in Proceedings of the 22nd ACM Internet Measurement Conference, in 
IMC ’22. New York, NY, USA: Association for Computing Machinery, Oct. 2022, pp. 
551–559. doi: 10.1145/3517745.3561438.
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