
Copa: Practical Delay-Based
Congestion Control for the Internet

Presenter: Haoran Wan

Drawback of Previous Schemes
● Packet loss (or ECN) based algorithms (Reno, Cubic, etc.): network buffers

are filled – high queuing delay. (May not be true with AQMs)
● Delay based algorithms (Vegas, FAST): prone to overestimate delay due to

ACK compression, network jiter – underutilize the link.
● Special cases of network (cellular, web, WiFi): lack of generalizability.
● Objective-optimization methods (Remy, PCC, Vivace): online rules are

much more complex and hard for humans to reason about.

Copa’s High Level Goal
We ask whether it is possible to develop a congestion control algorithm that:

● Achieves the goals of high throughput, low queueing delay, and fair
rate allocations;

● But is also simple to understand and is general in its applicability to a
wide range of environments and workloads;

● And performs at least as well as the best prior schemes designed for
particular situations.

Problem Definition
Optimization goal:

Average throughput Packet delayWeight

Why? Explained later.

Under certain simplified (but reasonable) modeling assumptions of packet
arrivals, the steady-state sending rate that maximizes U is:

Mean per-packet queuing delay

Copa Algorithm
Incorporate three ideas:

1. A target rate to aim for;

2. A window update rule that depends moves the sender towards the target
rate;

3. A TCP-competitive strategy to compete well with buffer-filling flows.

Target Rate and Update Rule
Congestion window (cwnd), sender estimates the current rate:

Smallest RTT observed over
 a recent time-window.

The time-window t=srtt/2, where srtt is the current value of the standard
smoothed RTT estimate.
RTTstanding is the RTT corresponding to a “standing” queue, thus the queuing
delay is calculated as:

Smallest RTT observed over
a long time-window.

Long time window= min(10s, session period).

Why not latest RTT sample? Avoid RTT compression and jitters.

Target Rate and Update Rule
With the dq calculated, we can calculate the target rate according to the
previous equation:

If current rate exceeds the target, the sender reduce cwnd; otherwise, it
increases cwnd.

Sender paces packets at a rate of 2*cwnd/RTTstanding, to avoid packet burst.

Target Rate and Update Rule
To wrap up, upon receiving ACK, Copa applies the following steps:

1. Update the queuing delay using RTTstanding and RTTmin, using the
standard TCP EWMA estimator;

2. Set
3. If , then

, where v is a “velocity parameter”. Otherwise,

4. The velocity parameter, v, speeds-up convergence….

Target Rate and Update Rule
4. Once per window, the sender compares the current cwnd to the cwnd value
at the time that the latest acknowledged packet was sent. If the current cwnd
is larger, then set direction to “up”; if it is small, then set direction to “down”.
Now if the direction is the same as in the previous window, then double v.

However, start doubling v only after the direction has remained the same for
three RTTs. Since direction may remain the same for 2.5 RTTs in steady state
as shown in figure 1, doing otherwise can cause v to be >1 even during steady
state. In steady state, we want v=1.

/ : v = 2* v : v = 1

Competing with Buffer-Filling Schemes
Modify Copa to compete well with buffer-filling algorithms such as Cubic and
NewReno while maintaining its good properties. Two distinct modes of
operation for Copa:

1. The default mode where and
2. A competitive mode where is adjusted dynamically to match the

aggressiveness of typical buffer-filling schemes.

Competing with Buffer-Filling Schemes
A detector to detect whether Copa is competing with buffer-filling schemes.

Key Copa property:
the queue is empty at least once every 5 RTT. (explained later)

If the sender sees a “nearly empty” queue in the last 5 RTTs, it remains in the
default mode; otherwise, it switches to competitive mode.

“Nearly empty”: any queuing delay lower than 10% of the rate oscillations in
the last 4 RTTs:

Max RTT over last 4 RTTs.

Competing with Buffer-Filling Schemes
In competitive mode the sender varies 1/δ according to whatever buffer-filling
algorithm one wishes to emulate (e.g., NewReno, Cubic, etc.).

In competitive mode, δ ≤0.5. When Copa switches from competitive mode to
default mode, it resets δ to 0.5.

Even competing with buffer-filling flow, the queue length could be low (when a
loss happens to other flows), Copa will switch between default mode and
competitive mode.

Dynamics of Copa
Assertion: In steady state, each Copa flow makes small oscillations about the
target rate, which also is the equilibrium rate.

When the propagation delays for flows sharing a bottleneck are similar and
comparable to (or larger than) the queuing delay, the small oscillations
synchronize to cause the queue length at the bottleneck to oscillate
between 0 and packets every 5 RTTs. Here, . The
equilibrium queue length is packets. When each
(the default value), , where n is the number of flows.

Dynamics of Copa
Assumption: link rate is constant u, feedback delay is constant RTTmin ≅ RTT,
meaning the queue length inferred from an ACK at time t is：

Under the constant-delay assumption, the sending rate is:

w(t) is congestion window at time t Bandwidth delay product, in-flights
bits.

Dynamics of Copa

Dynamics of Copa

Justification of the Target Rate
After all the analysis above, we still don’t know how they decide the target
rate:

Consider the objective function for sender i:

Suppose each sender attempts to maximize its own objective function, the
system will reach a Nash equilibrium when no sender can increase its
objective function by unilaterally changing its rate.

Switch delay:

Objective Function and Nash Equilibrium
Lemma 1. Consider a network with n flows, with flow i sending packets with
rate λi such that the arrival at the bottleneck queue is Markovian. Then, if flow
i has the objective function defined by Eq. (3), and the bottleneck is an M/M/1
queue, a unique Nash equilibrium exists. Further, at this equilibrium, for every
sender i,

where

Objective Function and Nash Equilibrium
Proof. Denote the total arrival rate as , for an M/M/1 queue, the
sum of the average wait time in the queue and the link is , given the
dequeue rate is . Then we got ():

Setting the partial derivative , we have:

Second derivative, , so it’s a maximum point.

Objective Function and Nash Equilibrium
So each flow i should have the sending rate, which:

The unique solution of this family of linear equations is:

which is the desired equilibrium rate of sender i

Update Rule Follows from the Equilibrium Rate
At equilibrium rate, the inter-send time between packets is:

As previously discussed, the switch delay for the M/M/1 queue is :

Then the inter-send time became:

Properties of the Equilibrium

Meaning the equilibrium queuing delay is , if all , the
number of packets enqueued is 2n+1.

If all node has the same , it’s equivalent to dividing the capacity between n
senders and “pseudo-senders”, since .

If we want low latency, we can increase .

Evaluation
User-space implementation for Copa, and it’s compared with linux kernel
Cubic, Vegas, Reno and BBR, user-space implementations of Remy, PCC,
Vivace, Sprout, and Verus.

Ns-2 simulation: compared with Cubic, NewReno, Vegas, DCTCP.

Evaluation
A 100 Mbit/s link with 20 ms RTT and 1 BDP buffer using Linux qdiscs.

Evaluation

Evaluation
Real-world pantheon evaluation. Pantheon had nodes in six countries. It
creates flows using each congestion control scheme between a node and an
AWS server nearest it, and measures the throughput and delay.

Evaluation
Fairness on RTT

Evaluation
Robustness to packet loss. Datacenter environment.

Evaluation

Opinion
Copa’s scientific part is well formulated and the evaluation result looks great.

Copa doesn’t act directly on the bottleneck queue, but use the delay to
optimize the queue delay.

Wonder how it will perform under some Active Queue Management schemes.

Discussion
https://app.perusall.com/courses/cos597s_f2024-advanced-topics-in-compute
r-science-recent-advances-in-wireless-networks/copa?assignmentId=a4GiTy4Q
ckQKd68M3&part=1

https://app.perusall.com/courses/cos597s_f2024-advanced-topics-in-computer-science-recent-advances-in-wireless-networks/copa?assignmentId=a4GiTy4QckQKd68M3&part=1
https://app.perusall.com/courses/cos597s_f2024-advanced-topics-in-computer-science-recent-advances-in-wireless-networks/copa?assignmentId=a4GiTy4QckQKd68M3&part=1
https://app.perusall.com/courses/cos597s_f2024-advanced-topics-in-computer-science-recent-advances-in-wireless-networks/copa?assignmentId=a4GiTy4QckQKd68M3&part=1

