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Drawback of Previous Schemes
● Packet loss (or ECN) based algorithms (Reno, Cubic, etc.): network buffers 

are filled – high queuing delay. (May not be true with AQMs)
● Delay based algorithms (Vegas, FAST): prone to overestimate delay due to 

ACK compression, network jiter – underutilize the link.
● Special cases of network (cellular, web, WiFi): lack of generalizability. 
● Objective-optimization methods (Remy, PCC, Vivace): online rules are 

much more complex and hard for humans to reason about.



Copa’s High Level Goal
We ask whether it is possible to develop a congestion control algorithm that:

● Achieves the goals of high throughput, low queueing delay, and fair 
rate allocations;

● But is also simple to understand and is general in its applicability to a 
wide range of environments and workloads;

● And performs at least as well as the best prior schemes designed for 
particular situations.



Problem Definition
Optimization goal:

Average throughput Packet delayWeight

Why? Explained later.

Under certain simplified (but reasonable) modeling assumptions of packet 
arrivals, the steady-state sending rate that maximizes U is:

Mean per-packet queuing delay



Copa Algorithm
Incorporate three ideas:

1. A target rate to aim for;

2. A window update rule that depends moves the sender towards the target 
rate;

3. A TCP-competitive strategy to compete well with buffer-filling flows.



Target Rate and Update Rule
Congestion window (cwnd), sender estimates the current rate:

Smallest RTT observed over
 a recent time-window.

The time-window t=srtt/2, where srtt is the current value of the standard 
smoothed RTT estimate.
RTTstanding is the RTT corresponding to a “standing” queue, thus the queuing 
delay is calculated as: 

Smallest RTT observed over 
a long time-window. 

Long time window= min(10s, session period).

Why not latest RTT sample? Avoid RTT compression and jitters.



Target Rate and Update Rule
With the dq calculated, we can calculate the target rate according to the 
previous equation:

If current rate exceeds the target, the sender reduce cwnd; otherwise, it 
increases cwnd. 

Sender paces packets at a rate of 2*cwnd/RTTstanding, to avoid packet burst.



Target Rate and Update Rule
To wrap up, upon receiving ACK, Copa applies the following steps:

1. Update the queuing delay         using RTTstanding and RTTmin, using the 
standard TCP EWMA estimator;

2. Set 
3. If                                                                  , then                                                              

, where v is a “velocity parameter”. Otherwise, 

4. The velocity parameter, v, speeds-up convergence…. 



Target Rate and Update Rule
4. Once per window, the sender compares the current cwnd to the cwnd value 
at the time that the latest acknowledged packet was sent. If the current cwnd 
is larger, then set direction to “up”; if it is small, then set direction to “down”. 
Now if the direction is the same as in the previous window, then double v. 

However, start doubling v only after the direction has remained the same for 
three RTTs. Since direction may remain the same for 2.5 RTTs in steady state 
as shown in figure 1, doing otherwise can cause v to be >1 even during steady 
state. In steady state, we want v=1.

/             : v = 2* v : v = 1



Competing with Buffer-Filling Schemes
Modify Copa to compete well with buffer-filling algorithms such as Cubic and 
NewReno while maintaining its good properties. Two distinct modes of 
operation for Copa:

1. The default mode where                   and
2. A competitive mode where      is adjusted dynamically to match the 

aggressiveness of typical buffer-filling schemes.                  



Competing with Buffer-Filling Schemes
A detector to detect whether Copa is competing with buffer-filling schemes.

Key Copa property: 
the queue is empty at least once every 5 RTT. (explained later)

If the sender sees a “nearly empty” queue in the last 5 RTTs, it remains in the 
default mode; otherwise, it switches to competitive mode.

“Nearly empty”: any queuing delay lower than 10% of the rate oscillations in 
the last 4 RTTs:

Max RTT over last 4 RTTs.



Competing with Buffer-Filling Schemes
In competitive mode the sender varies 1/δ according to whatever buffer-filling 
algorithm one wishes to emulate (e.g., NewReno, Cubic, etc.). 

In competitive mode, δ ≤0.5. When Copa switches from competitive mode to 
default mode, it resets δ to 0.5.

Even competing with buffer-filling flow, the queue length could be low (when a 
loss happens to other flows), Copa will switch between default mode and 
competitive mode. 



Dynamics of Copa
Assertion: In steady state, each Copa flow makes small oscillations about the 
target rate, which also is the equilibrium rate. 

When the propagation delays for flows sharing a bottleneck are similar and 
comparable to (or larger than) the queuing delay, the small oscillations 
synchronize to cause the queue length at the bottleneck to oscillate 
between 0 and          packets every 5 RTTs. Here,                               . The 
equilibrium queue length is                                      packets. When each            
(the default value),                , where n is the number of flows.



Dynamics of Copa
Assumption: link rate is constant u, feedback delay is constant RTTmin ≅ RTT, 
meaning the queue length inferred from an ACK at time t is：

Under the constant-delay assumption, the sending rate is:

w(t) is congestion window at time t Bandwidth delay product, in-flights 
bits.



Dynamics of Copa



Dynamics of Copa



Justification of the Target Rate
After all the analysis above, we still don’t know how they decide the target 
rate:

Consider the objective function for sender i:

Suppose each sender attempts to maximize its own objective function, the 
system will reach a Nash equilibrium when no sender can increase its 
objective function by unilaterally changing its rate.

Switch delay:



Objective Function and Nash Equilibrium
Lemma 1. Consider a network with n flows, with flow i sending packets with 
rate λi such that the arrival at the bottleneck queue is Markovian. Then, if flow 
i has the objective function defined by Eq. (3), and the bottleneck is an M/M/1 
queue, a unique Nash equilibrium exists. Further, at this equilibrium, for every 
sender i,

where 



Objective Function and Nash Equilibrium
Proof. Denote the total arrival rate as                     , for an M/M/1 queue, the 
sum of the average wait time in the queue and the link is          , given the 
dequeue rate is    . Then we got (                ):

Setting the partial derivative              , we have:

Second derivative,       , so it’s a maximum point.



Objective Function and Nash Equilibrium
So each flow i should have the sending rate, which:

The unique solution of this family of linear equations is:

which is the desired equilibrium rate of sender i



Update Rule Follows from the Equilibrium Rate
At equilibrium rate, the inter-send time between packets is:

As previously discussed, the switch delay for the M/M/1 queue is :

Then the inter-send time became:



Properties of the Equilibrium

Meaning the equilibrium queuing delay is               , if all                     , the 
number of packets enqueued is 2n+1. 

If all node has the same      , it’s equivalent to dividing the capacity between n 
senders and     “pseudo-senders”, since                           . 

If we want low latency, we can increase     .



Evaluation
User-space implementation for Copa, and it’s compared with linux kernel 
Cubic, Vegas, Reno and BBR, user-space implementations of Remy, PCC, 
Vivace, Sprout, and Verus.

Ns-2 simulation: compared with Cubic, NewReno, Vegas, DCTCP.



Evaluation
A 100 Mbit/s link with 20 ms RTT and 1 BDP buffer using Linux qdiscs. 



Evaluation



Evaluation
Real-world pantheon evaluation.  Pantheon had nodes in six countries. It 
creates flows using each congestion control scheme between a node and an 
AWS server nearest it, and measures the throughput and delay. 



Evaluation
Fairness on RTT



Evaluation
Robustness to packet loss. Datacenter environment.



Evaluation



Opinion
Copa’s scientific part is well formulated and the evaluation result looks great.

Copa doesn’t act directly on the bottleneck queue, but use the delay to 
optimize the queue delay.

Wonder how it will perform under some Active Queue Management schemes.



Discussion
https://app.perusall.com/courses/cos597s_f2024-advanced-topics-in-compute
r-science-recent-advances-in-wireless-networks/copa?assignmentId=a4GiTy4Q
ckQKd68M3&part=1

https://app.perusall.com/courses/cos597s_f2024-advanced-topics-in-computer-science-recent-advances-in-wireless-networks/copa?assignmentId=a4GiTy4QckQKd68M3&part=1
https://app.perusall.com/courses/cos597s_f2024-advanced-topics-in-computer-science-recent-advances-in-wireless-networks/copa?assignmentId=a4GiTy4QckQKd68M3&part=1
https://app.perusall.com/courses/cos597s_f2024-advanced-topics-in-computer-science-recent-advances-in-wireless-networks/copa?assignmentId=a4GiTy4QckQKd68M3&part=1

