
Zhuge: Achieving Consistent Low Latency for Wireless Real-Time

Communications with the Shortest Control Loop

Presenter: Yunxiang Chi
09/27/2024

Problem Statement

RTC applications’ performance suffers from the tail latency

RTC applications requires consistent low latency:

- Video conferencing: <150ms
- Cloud gaming: <96ms

Most of the time, wireless network provide median RTT ~100ms, but the 99th percentile latency is
~400ms

Wireless users encounter 2× more video lags of maintaining the optimal working point with different
feedback than Ethernet users. Furthermore, the fps drops is 10× higher than that of wired networks

Problem Statement

Senders react quite slowly toward transient congestion

Problem Statement

Senders react quite slowly toward transient congestion

Insight

Rough Idea:

As the downlink queue starts to

fill, AP can modify or delay

packets in the uplink queue to

allow congestion signals to reach

the sender without the delay of

the congested bottleneck in the

full control path.

Challenges

- Prediction: Naively (num of bytes queued)/(link capacity)

But link bandwidth fluctuates quickly: The estimation above -> inaccurate

- Reporting: Enabling routers to directly transmit newly defined messages back

to senders

Deployment barriers due to different entities managing APs and senders.

- Compatibility: Various existing protocols for signaling methods: BBR:

weighted moving average of RTT, Copa: minimum RTT values, RTP: inter-

packet timings

Require AP to figure out a way to capture all of these factors without modifying

sender & receiver

Zhuge’s Design

Zhuge

Key Idea:

Estimates the future latency of a packet upon its arrival at the wireless last mile to

obtain network conditions as early as possible.

(Review) Challenges

- Prediction: Naively (num of bytes queued)/(link capacity)

But link bandwidth fluctuates quickly: The estimation above -> inaccurate

- Reporting: Enabling routers to directly transmit newly defined messages back

to senders

Deployment barriers due to different entities managing APs and senders.

- Compatibility: Various existing protocols for signaling methods: BBR:

weighted moving average of RTT, Copa: minimum RTT values, RTP: inter-

packet timings

Require AP to figure out a way to capture all of these factors without modifying

sender & receiver

Fortune Teller

Fortune Teller

Strawman solution: (queue size)/(dequing rate)

transience-equilibrium nexus: A short sliding window will lead to drastic

fluctuations of the predicted delays due to the bursts of arrivals and departures, and a

long window will fail to quickly detect the change of network conditions.

1

2

Fortune Teller

I. Queuing delay

a. qLong: from the time when one packet arrives, to the time when that packet is at the

front of the queue, which is used to cover the latency fluctuation induced by wireless

contention and bursty RTC traffic.

b. qShort: from the time one packet is at the front of the queue, to the time when that

packet is finally dequeued

c. qSize = max(sizeOfPacketsInQueue − maxBurstSize, 0)

Fortune Teller

II. Transmission Delay: tx

- Observations:
- 1. Only one data unit can be in transmission at a time in the wireless channel (aggregated

MPDU, or AMPDU). Since multiple will interfere with each other.

- 2. Recent Linux Mainline have exposed the lower layer queue in the wireless network stack is

only used to aggregate multiple packets into a link layer frame

- Design: tx = avg(dequeueIntvl)

the average interval between packet departures from the network layer

queue, with a window similar to txRate

(Review) Challenges

- Prediction: Naively (num of bytes queued)/(link capacity)

But link bandwidth fluctuates quickly: The estimation above -> inaccurate

- Reporting: Enabling routers to directly transmit newly defined messages back

to senders

Deployment barriers due to different entities managing APs and senders.

- Compatibility: Various existing protocols for signaling methods: BBR:

weighted moving average of RTT, Copa: minimum RTT values, RTP: inter-

packet timings

Require AP to figure out a way to capture all of these factors without modifying

sender & receiver

Feedback Updater

Feedback Updater

I. In-band feedback: the feedback information is explicitly written in the

payload of a specific type of feedback packets. E.g. RTP&RTCP

II. Out-of-band feedback: sender calculates network conditions itself upon

receiving the feedback packets i.e. without info related to rate control. E.g.

TCP

Feedback Updater: Out-of-band

Feedback Updater: Out-of-band

- Delivering precise long-term latency in steady state
- Record relative delay deltas

- Delivering precise short-term latency fluctuation
- maintain a distribution of recent delay deltas of the downlink data packets, use the sampling

value from the distribution when reporting the delay

- Preserving the order of feedback packets
- Delay token

- E.g. ACK1, 2 ,3 arrive at 0, 1, 2ms; sampled delay deltas: +5, +2, +4ms

- Step 1: ACK 1 sent at 5ms, no token created

- Step 2: ACK2 supposed to send at (1+2)ms, but sent at 5ms, create token of (5-2)ms

- Step 3: ACK3 supposed to send at 5ms, apply token need to add (4-3)ms to the actual delay,

sent at 6ms, doesn’t create token.

Feedback Updater: In-band

- Step1: Zhuge store the predicted delay together with its RTP transport-wide

congestion control sequence number in the RTP header upon RTP pkt arrival.

- Step 2: Zhuge will construct a TWCC feedback packet based on stored delays

and sequence numbers, and will only send the TWCC packets constructed by

itself and drop all TWCC from the client. For other types of feedback packets,

Zhuge simply forwards it.

Evaluaion

Setup

- Implementation:
- NS-3 simulator with simplified video encoder/decoder
- Testbed using OpenWrt on Netgear WNDR 3800 router (802.11n)

- Video Settings: 1080p, 24fps, average bitrate 2Mbps
- Baselines:

- RTP/RTCP: Gcc+FIFO, Gcc+CoDel, Gcc+Zhuge (+CoDel)
- TCP: Copa, Copa+FastAck, ABC, Copa+ZhugeNetwork

- Traces:
- WiFi: Restaurant (W1)
- Office (W2)
- Cellular: Indoor Mixed 4G/5G (C1)
- City 4G (C2)
- City 5G (C3)

- Metrics:
- RTT (tail latency: >200ms)
- Frame delay (delayed: >400ms)
- Frame rate (low: <10fps)

Comparison with RTP

- reduce the ratio of long network RTT by

45% to 75% compared with the best

baseline

- delayed frame ratio is reduced by 38% to

92% in different traces

- the P99 tail latency is reduced from

400ms to 170ms

- 400ms delayed frame ratio is reduced

from 1% to 0.55% based on trace W1.

- Zhuge could also reduce the ratio of low

frame rate by at least 50% in two traces

Comparison with TCP

- tail latency: Copa+Zhuge

comprehensively outperforms Copa and

Copa+FastAck

- For frame delay, Copa+Zhuge achieves

the best performance over competitors

where Copa+FastAck is slightly better.

Quickly adapt ABW drop

- RTP/RCTP: reduces the

duration of network

degradations and

application performance by

at least 50% in a wide

range of settings

- TCP: reduce the duration of

high network RTT by 14%

to 64.3% when 𝑘 <30. For

Flow competition & wireless interference

- Competition: reduce the

duration of performance

degradation by up to 40%

in all cases

- Interference: reduce the

frequency of degradation

of both network condition

and application

performance by at least

50%

Real-World Experiments

- both network RTT and frame delay of the RTC flow with Zhuge has been

improved against baselines by 17% to 95% (network RTT) and 9% to 67%

(frame delay) in all scenarios.

- can maintain similar average bitrate

Estimation Accuracy

- In most cases, the prediction error is much less than the RTT in our

experiment (50ms).

- when the estimated delay is low (1-64ms), the estimation is usually accurate.

When the estimated delay is high (>64ms), the estimation could be

inaccurate, but the real delays are still high enough (more than one RTT)

Fairness and CPU utilization

- the bitrate fairness in the steady state is not affected by Zhuge with GCC over

or Copa.

- For both GCC and Copa, the bitrate difference of the two flows are < 3%

- 10-year-ago APs could still support Zhuge to process 5 concurrent RTC flows

Discussion

	Slide 1: Zhuge: Achieving Consistent Low Latency for Wireless Real-Time Communications with the Shortest Control Loop
	Slide 2: Problem Statement
	Slide 3: Problem Statement
	Slide 4: Problem Statement
	Slide 5: Insight
	Slide 6: Challenges
	Slide 7: Zhuge’s Design
	Slide 8: Zhuge
	Slide 9: (Review) Challenges
	Slide 10: Fortune Teller
	Slide 11: Fortune Teller
	Slide 12: Fortune Teller
	Slide 13: Fortune Teller
	Slide 14: (Review) Challenges
	Slide 15: Feedback Updater
	Slide 16: Feedback Updater
	Slide 17: Feedback Updater: Out-of-band
	Slide 18: Feedback Updater: Out-of-band
	Slide 19: Feedback Updater: In-band
	Slide 20: Evaluaion
	Slide 21: Setup
	Slide 22: Comparison with RTP
	Slide 23: Comparison with TCP
	Slide 24: Quickly adapt ABW drop
	Slide 25: Flow competition & wireless interference
	Slide 26: Real-World Experiments
	Slide 27: Estimation Accuracy
	Slide 28: Fairness and CPU utilization
	Slide 29: Discussion
	Slide 30

