
Channel-Aware 5G RAN Slicing with
Customizable Schedulers

Zijian Qin

5G RAN Slicing

Need for Channel-Awareness

Need for Channel-Awareness

Need for Channel-Awareness

· For a UE, the quality of wireless channel varies among different frequency bands.
frequency selective fading

Need for Channel-Awareness

· For a UE, the quality of wireless channel varies among different frequency bands.
· The quality of wireless channel may complement among different UEs.

frequency selective fading

Existing RAN Slicing Techniques

· Inter-slice scheduling--divides RBs across slices: channel-agnostic

· Enterprise scheduling--allocates its RBs to its users: channel-aware

Example1: NVS [21] allocates RBs to slices in the time domain

Existing RAN Slicing Techniques

· Inter-slice scheduling--divides RBs across slices: channel-agnostic

· Enterprise scheduling--allocates its RBs to its users: channel-aware

Example2: Flare [29] allocates RBs to slices in the frequency domain

Existing RAN Slicing Techniques

· Inter-slice scheduling--divides RBs across slices: channel-agnostic

· Enterprise scheduling--allocates its RBs to its users: channel-aware

· Pros: decouple inter-slice and enterprise scheduling

· Cons: inter-slice scheduling is channel-agnostic

Why Do We Need Channel-Aware Inter-slice Scheduling

Why Do We Need Channel-Aware Inter-slice Scheduling

Why Do We Need Channel-Aware Inter-slice Scheduling

Why Do We Need Channel-Aware Inter-slice Scheduling

Why Do We Need Channel-Aware Inter-slice Scheduling

Channel-aware slicing at both inter-slice and enterprise level is challenging!

Challenge: Cyclic Dependency

Challenge: Cyclic Dependency

Challenge: Cyclic Dependency

· RB2 is allocated to different UEs.

· The channel quality is determined by

 the UE to which the RB is allocated.

Challenge: Cyclic Dependency

· RB2 is allocated to different UEs.

· The channel quality is determined by

 the UE to which the RB is allocated.

For an inter-slice scheduler to be channel-aware,
it must know the UE to which each RB will be allocated by the enterprise scheduler

Challenge: Cyclic Dependency

· For an inter-slice scheduler to be channel-aware,

it must know the UE to which each RB will be allocated by the enterprise scheduler;

· For an enterprise scheduler to determine the resource allocation to its UEs,

 it must know the entire RBs allocated to this slice.

Insights to Solve the Challenge

· Both inter-slice scheduler and enterprise scheduler run in gNb.

· The inter-slice scheduler can query the enterprise scheduler:

 “If I give resource R to slice S, which UE in slice S will get resource R?”

· The enterprise scheduler is often greedy:

 It allocate RB to UE given the current RBs and historically allocated RBs,

 independent of future allocated RBs.

· The inter-slice scheduler must also be greedy.

RadioSaber’s Design

· Channel-aware inter-slice scheduler.

· Customizable enterprise scheduler.

· RadioSaber Workflow.

RadioSaber’s Design

· Channel-aware inter-slice scheduler.

· Customizable enterprise scheduler.

· RadioSaber Workflow.

Channel-Aware Inter-slice Scheduler
· Compute the quota for each slice per tti

Channel-Aware Inter-slice Scheduler
· Compute the quota for each slice per tti

For s in S do

 rbgs_quota[s] = |RBG| × ws

End for

Non-integer number of quota!
weight for slice s

Channel-Aware Inter-slice Scheduler
· Compute the quota for each slice per tti

For s in S do

 rbs_share[s] = |RB|×ws – rbs_offset[s]

 rbgs_quota[s] = round_down(rbs_share[s] / k)

End for

number of RBs in a RBG

Channel-Aware Inter-slice Scheduler
· Compute the quota for each slice per tti

For s in S do

 rbs_share[s] = |RB|×ws – rbs_offset[s]

 rbgs_quota[s] = round_down(rbs_share[s] / k)

End for

extra_rbgs = |RBG| - sum(rbgs_quota)

Channel-Aware Inter-slice Scheduler
· Compute the quota for each slice per tti

For s in S do

 rbs_share[s] = |RB|×ws – rbs_offset[s]

 rbgs_quota[s] = round_down(rbs_share[s] / k)

End for

extra_rbgs = |RBG| - sum(rbgs_quota)

While extra_rbgs > 0 do

 rbgs_quota[S.rand()] += 1

 extra_rbgs -= 1

End while

Channel-Aware Inter-slice Scheduler
· Compute the quota for each slice per tti

For s in S do

 rbs_share[s] = |RB|×ws – rbs_offset[s]

 rbgs_quota[s] = round_down(rbs_share[s] / k)

End for

extra_rbgs = |RBG| - sum(rbgs_quota)

While extra_rbgs > 0 do

 rbgs_quota[S.rand()] += 1

 extra_rbgs -= 1

End while

For s in S do

 rbs_offset[s] = rbgs_quota[s] × k – rbs_share[s]

End for

Channel-Aware Inter-slice Scheduler
· Determine RB allocation to slices greedily:

 Pick a RB

 ↓

 Query every enterprise scheduler the maximum channel quality among its UEs for this RB

 ↓

 Assign the RB to the slice which can offer the maximum channel quality

 (if the quota for this slice hasn’t been satisfied)

Channel-Aware Inter-slice Scheduler
· Determine RB allocation to slices greedily:

 Pick a RB

 ↓

 Query every enterprise scheduler the maximum channel quality among its UEs for this RB

 ↓

 Assign the RB to the slice which can offer the maximum channel quality

 (if the quota for this slice hasn’t been satisfied)

The order to pick
the RB matters!

Channel-Aware Inter-slice Scheduler
· The order to pick the RB matters.

Channel-Aware Inter-slice Scheduler
· The order to pick the RB matters.

Channel-Aware Inter-slice Scheduler
· The order to pick the RB matters.

Channel-Aware Inter-slice Scheduler
· The order to pick the RB matters.

RadioSaber’s Design

· Channel-aware inter-slice scheduler.

· Customizable enterprise scheduler.

· RadioSaber Workflow.

Customizable Enterprise Scheduler
· Factors to consider:

 channel quality, fairness, flow priority, queuing delay

· Solution: parameterization.

Customizable Enterprise Scheduler
· Paradigm 1: select user first

 - for UE u given RBG i:

 pick the UE with highest metric and the flow with the highest priority for that UE.

 - du,i : instantaneous data rate for UE u at RBG i

 Ru : historical RBG allocation to UE u

 𝜀, 𝛹: parameters, determine the relative weightage

Customizable Enterprise Scheduler
· Paradigm 2: select highest priority first

 - for UE u given RBG i and flow priority p:

 - du,i : instantaneous data rate for UE u at RBG i

 Ru : historical RBG allocation to UE u

 Du,p : queuing delay of UE u and priority p

 𝛽, 𝜀, 𝛹: parameters, determine the relative weightage

RadioSaber’s Design

· Channel-aware inter-slice scheduler.

· Customizable enterprise scheduler.

· RadioSaber Workflow.

RadioSaber’s Workflow

RadioSaber’s Workflow

Implementation
· Extend Open5GS to add support for RadioSaber control workflow

 - 530 lines code in total

· Trace-driven simulation using traces from LTScope

 - up to 800 users

Evaluation
Spectrum efficiency and fairness

slice 1-10, maximum throughput scheduling

slice 11-20, proportional fair scheduling

Evaluation
Diverse enterprise schedulers

Evaluation
Diverse enterprise schedulers

Evaluation
Ablation experiment

Evaluation
Varying number of slices and number of UEs per slice

Evaluation
Non-greedy enterprise schedulers

Evaluation
Other inter-slice schedulers

Evaluation
Scheduling latency

Opinion
· Low implementation

· Good background statement

· Complementary channel quality may not be very common

