Hongyu Hè

hhy@princeton.edu October 25, 2024

Ising machines as hardware solvers of combinatorial optimization problems by **Naeimeh Mohseni, Peter L. McMahon, and Tim Byrnes** (paper review)

- Traveling salesman problem (TSP)
- Bin packing/Knapsack
- Boolean satisfiability (SAT)
- Graph coloring
- Subset sum
- Max cut

…

HP-Hard Problems

Non-digital approaches to solving them?

- Traveling salesman problem (TSP)
- Bin packing/Knapsack
- Boolean satisfiability (SAT)
- Graph coloring
- $Subs$ \bullet Max …

HP-Hard Problems

 $3/40$ 3 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Non-digital approaches to solving them?

Can be mapped to '**Ising Hamiltonian**' in polynomial time!

Ising Hamiltonian

- "Spins": $\delta \triangleq (\delta_1, \delta_2, ..., \delta_N)$ where $\delta_k \in \{-1, +1\}$
- **Interaction** $\delta_i \delta_j$: Bistable energy states
- **Connectivity/Coupling**: *J* ∈ ℝ*N*×*^N*
- Bias terms *h*: The external energy applied on every spin ⃗

Ising Hamiltonian

$$
H = -\sum_{i,j=1}^{N} J_{i,j} \cdot \delta_i \delta_j
$$

5 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

 $[Cho, Science'16]$ / 40

Ising Hamiltonian

$$
H = -\sum_{i,j=1}^{N} J_{i,j} \cdot \delta_i \delta_j
$$

6 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

 $[Cho, Science'16]$ 6/40

Ising Machine

 $7/40$ 7 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Ising Hamiltonian

Oscillator-Based Ising Machines

 $9/ 40$ FR Hamerly et al. Science Advances '19] 9 /40 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

- Bi-phase states: |0⟩ or |*π*⟩
- Properties Frequency locking: $\omega_p = 2 \cdot \omega_s$ Phase locking: $\phi_p = 2(\phi_s + 0) + \pi/2 + 2m\pi$ $\phi_p = 2(\phi_s + \pi) + \pi/2 + 2m\pi$

: Phases of the oscillators *δ*

Resonant at *ωs*

10 / 40 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Ising Hamiltonian

Physical

System Measurement

Energy

Coherent Ising Machine (CIM)

Coherent Ising Machine (CIM)

Coupling Oscillators

 $11/40$ Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

HP-Hard Problems

- Traveling salesman problem (TSP)
- Bin packing/Knapsack
- Boolean satisfiability (SAT)
- Graph coloring
- Subset sum

 $13/40$ Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Programming the CIM A single DOPO

[A. Marandi et al., Nature Photonics '14]

 $14/40$ Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

[R Hamerly et al. Science Advances '19] 16/40

Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Different but still Difficult

CIM does not change the optimization landscape

Nor does it improve its complexity class

: Qubits controlled by quantum operators *δ* │

• Classical Ising Hamiltonian (the problem)

Quantum Annealing

$$
H(s) = -A(s)\sum_{i}^{N} \delta_i^x + B(s) \left[\sum_{i,j}^{N} \right].
$$

 $J_{i,j} \cdot \delta_i^z \delta_j^z +$ *N* ∑ *i hi* δ_i^z *i*

-
-
- Pauli-Z operator $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$: Induces no quantum effect

 $19/ 40$ Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

-
- 1 0 $0 -1)$

 $\sqrt{2}$

Transverse field

Pauli-X operator: $\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$: Leads to superposition 0 1 1 0)

Problems with Quantum Annealing

-
- Ising problems often require **all-to-all** dense connections (D-Wave) Hardware limited to **sparse** connectivity
- One node mapped to a Chimera graph
	- 1 Ising spin : N hardware qubits (often quadratic)
	- \triangleright 2K qubits \Rightarrow \leq 50 spins
- **Quadratic atop exponential runtime!**

Other Approaches

a Stochastic magnetic tunnel junctions

c Coupled electrical relaxation oscillators

 $22/40$ Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Evaluation & Comparisons

- Computational complexity ❌
	- Most Ising machines are heuristic solvers (no theoretical guarantees)
	- Still $O(b^{a \cdot n})$ for near-optimal solutions
		- ๏ Improve on *b* or *a*
- Empirical performance
	- : Probability of finding exact ground state in one shot *p*suc
		- Not time consideration (longer run, p_{succ})
	- Time-to-solution $T_{\text{sol}} = \tau$

Evaluation Metrics

 $24/40$ 24 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

ln 0.01

Evaluation Workloads 1) Dense MaxCut instances 2) Sherrington-Kirkpatrick (SK) problems (compared to classical Hamiltonian) \triangleright Fixed positive values in J \rightarrow Random +1 or -1 couplings \triangleright Local interactions \rightarrow Full connectivity … $H_{SK} = -\sum J_{ij} \cdot s_i s_j$ *i*<*j*

 $25/40$ 25 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Results are **collected** from various original studies

Compared Ising Machines (1)

Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Success Probability

 $27/ 40$ 27 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Best scaling with *N***:** *p***suc** ∝ exp{−*bN*}

Compared Ising Machines (2)

28/40 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Class Discussion

Conclusion

- Connectivity is crucial for Ising machines
- Quantum annealing (QA) is limited by implementation
	- QA computational mechanism works in simulation ✅
	- D-Wave hardware does not scale ❌
	- Quantum mechanics (e.g., entanglement) in QA❓
- The best: Classical digital methods ('currently')
	- Analogue and quantum approaches rapidly developing
	- QA is new; Quantum+Classical❓

 $31/40$ 31 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)

Backup slides...

