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HP-Hard Problems Non-digital approaches to

solving them?

® Traveling salesman problem (TSP)
® Bin packing/Knapsack

® Boolean satisfiability (SAT)

® Graph coloring

® Subset sum

® Max cut
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HP-Hard Problems Non-digital approaches to
solving them?

® Traveling salesman problem (TSP)
® Bin packing/Knapsack
® Boolean satisfiability (SAT)

® Graph coloring

| Can be mapped to ‘Ising Hamiltonian’ in

polynomial time!
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Ising Hamiltonian
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® Bias terms /: The external energy applied on every spin . . .
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Ising Hamiltonian
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Ising Hamiltonian 8

)

[Cho, Science ’16]

A Y

,:/“' ,:"'l’,"
vy 44
.‘_( ! ,-"‘.‘. "
Y (44 - o
q " '"", ."' ,-‘

) Y, By 8 1,’ p B =
0% 4 d oS 44 - T
rayY. ) & ’ .Y i . - B
C N . . OF N
) V. . SV 4 . A
; . N 4i y : o

Ly
Hioh tat */{
Igh energy state
3¢

Medium energy sta

Low energy state :

' J

= Spins want to be opposite @ Satisfied interactions

6 /40 Hongyu He, “Ising machines as hardware solvers of combinatorial optimization problems” (paper review)



Ising Machine

Ising
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System
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Oscillator-Based Ising Machines




Degenerate Optical Parametric Oscillator (DOPO)
® 5 : Phases of the oscillators |0> or |Jt>

m X m

Pump

» Resonant at o,

» Bi-phase states: |0) or | 7)

time

® Properties

» Frequency locking: @, = 2 C, Signal Phase State: “0”
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Coherent Ising Machine (CIM)

Ising Physical
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Coherent Ising Machine (CIM)
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HP-Hard Problems

® Traveling salesman problem (TSP)
® Bin packing/Knapsack

® Boolean satisfiability (SAT)

® Graph coloring

® Subset sum
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Programming the CIM
A single DOPO

fs 1560 nm .
Laser
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Programming the CIM
Coupled four DOPOs

Time
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Simulating “Beam Splitters” Using FPGASs

Program arbitrary Ising Hamiltonian without creating optical systems

(a)
Laser oPO ((('6')))
AAANAA X)) N A
Pump
/\ SHG /\
Feedback 1 _
M Il Il {
P FPGA p— -
= FPG . 1
| _ A

[R Hamerly et al. Science Advances *19]
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Different but still Difficult

CIM does not change the optimization landscape

Nor does 1t improve 1ts complexity class

Minimum gain

Attractor Attractor
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Quantum Approaches




o 5 Qubits controlled by quantum operators

(the problem)

1 0
0 —1

> Pauli-Z operator ¢° = ( ) . Induces no quantum effect

® Transverse field

0 1

” Pauli-X operator: ¢* = ( _—

) . Leads to superposition



Quantum Annealing
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Problems with Quantum Annealing E\
® Ising problems often require all-to-all dense connections [:‘j

ﬁ“

® (D-Wave) Hardware limited to sparse connectivity

® One node mapped to a Chimera graph

» 1 Ising spin : N hardware qubits (often quadratic) 1
» 2K qubits = <50 spins

® Quadratic atop exponential runtime!
Unit Cell
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Other Approaches

a Stochastic magnetic tunnel junctions

p-bit

C Coupled electrical relaxation oscillators

/

VO,
TiO, (001)

22/40

b Memristor crossbar

Conductance G
Candidate solution —

(spin-state vector)

VoltageI , L,
T'_> i i
'me Output
(current vector)
i = ZGU Vl
d CMOS
Scheduler Memory
Controller
100 um
{ N
Router
Neuron
1.2 million transistors
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Evaluation & Comparisons




Computational complexity X

» Most Ising machines are heuristic solvers
(no theoretical guarantees)

» Still O(b*™) for near-optimal solutions
Improve on b or a
Empirical performance

Y Poyc: Probability of finding exact ground state in one shot

Not time consideration (longer run, pgyct)

In0.01

» Time-to-solution Ty = T———————
In(1 = pgyc)



Evaluation Workloads

1) Dense MaxCut instances

2) Sherrington-Kirkpatrick (SK) problems
HSK —_ 2 Jl] ‘ SiSj

i<j
(compared to classical Hamiltonian)

» Fixed positive values in J — Random +1 or —1 couplings

» Local interactions — Full connectivity

>...

Results are collected from various original studies
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Ising machine/ Acronym Operating principle Hardware Hardware Parallelization

algorithm connectivity
Coherent Ising CIM1 Dynamical oscillator Hybrid (optical/ @ All-to-all Yes
machine (NTT) FPGA)

Coherent Ising CIM2 Dynamical oscillator Hybrid (optical/ = All-to-all Yes
machine (Stanford) FPGA)

Coherent Ising CIM3 Dynamical oscillator Predicted® All-to-all Yes
machine algorithm T
D-Wave quantum | DWAV1  Quantum annealer Superconducting? Chimera §  Yes
annealer 2Q qubits ]
D-Wave quantum  DWAV2  Quantum annealer Superconducting ' Chimera Yes
annealer qubits 1

Advantagel.l 4

D-Wave quantum @ DWAV3  Quantum annealer Superconducting¥ Chimera Yes
annealer 2KQ qubits i

D-Wave quantum © DWAV4  Quantum annealer Superconducting ' Chimera Yes
annealer 2KQ qubits ¢ 1
Restricted RBM Simulated annealing FPGA All-to-all Yes
Boltzmann machine algorithm

Memristor MRT Simulated annealing Predicted® All-to-all Yes

annealing algorithm



Best scaling with /V:

Success Probability
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Ising machine/
algorithm

Breakout local
search

Chaotic amplitude
control

Toshiba bifurcation
machine

Fujitsu digital
annealer

Simulated
annealing

Simulated
annealing

Parallel tempering
Parallel tempering
Parallel tempering

Photonic recurrent
Ising sampler

Acronym Operating principle

BLS

CAC

TBM1

FDA1

SA1

SA2

PT1

P12

PT3

PRIS

Local search and simulated

annealing algorithm

Dynamical chaotic
algorithm

Discrete simulated
bifurcation algorithm

Simulated annealing
algorithm

Simulated annealing
algorithm

Simulated annealing
algorithm

Simulated annealing
algorithm

Simulated annealing
algorithm

Simulated annealing
algorithm

Oscillator-based annealer

Hardware

CPU

FPGA

FPGA

ASIC

CPU

CPU

CPU

CPU

CPU

Predicted®

Hardware
connectivity

All-to-all

All-to-all

All-to-all

All-to-all

All-to-all

All-to-all

All-to-all

All-to-all

All-to-all

All-to-all

Parallelization

No

Yes

Yes

Yes

Yes

No

No

No

No

Yes



a SK
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Classical digital hardware
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Class Discussion



Connectivity 1s crucial for Ising machines

Quantum annealing (QA) 1s limited by implementation

» QA computational mechanism works in simulation
» D-Wave hardware does not scale X

» Quantum mechanics (e.g., entanglement) in QA ?

The best: Classical digital methods (‘currently’)

» Analogue and quantum approaches rapidly developing

» QA is new; Quantum-+Classical ?
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