### Ising machines as hardware solvers of combinatorial optimization problems by Naeimeh Mohseni, Peter L. McMahon, and Tim Byrnes (paper review)

### Hongyu Hè

hhy@princeton.edu October 25, 2024







### **HP-Hard Problems**

- Traveling salesman problem (TSP)
- Bin packing/Knapsack
- Boolean satisfiability (SAT)
- Graph coloring
- Subset sum
- Max cut

### Non-digital approaches to solving them?





### **HP-Hard Problems**

- Traveling salesman problem (TSP)
- Bin packing/Knapsack
- Boolean satisfiability (SAT)
- Graph coloring
- Subs Max

### Non-digital approaches to solving them?



# Can be mapped to 'Ising Hamiltonian' in polynomial time!



### Ising Hamiltonian



- "Spins":  $\vec{\delta} \triangleq (\delta_1, \delta_2, \dots, \delta_N)$  where  $\delta_k \in \{-1, +1\}$
- > Interaction  $\delta_i \delta_j$ : Bistable energy states
- Connectivity/Coupling:  $J \in \mathbb{R}^{N \times N}$
- **Bias terms**  $\vec{h}$ : The external energy applied on every spin



### Ising Hamiltonian

$$H = -\sum_{\substack{i,j=1}}^{N} J_{i,j} \cdot \delta_i \delta_j$$





[Cho, Science '16]

### Ising Hamiltonian

$$H = -\sum_{\substack{i,j=1}}^{N} J_{i,j} \cdot \delta_i \delta_j$$





[Cho, Science '16]

### Ising Machine

### Ising Hamiltonian





# **Oscillator-Based Ising Machines**



•  $\vec{\delta}$ : Phases of the oscillators

### > Resonant at $\omega_{c}$

> Bi-phase states:  $|0\rangle$  or  $|\pi\rangle$ 

• Properties > Frequency locking:  $\omega_p = 2 \cdot \omega_s$ Phase locking:  $\phi_p = 2(\phi_s + 0) + \pi/2 + 2m\pi$  $\phi_p = 2(\phi_s + \pi) + \pi/2 + 2m\pi$ 

[R Hamerly et al. Science Advances '19]



9 / 40 Hongyu Hè, "Ising machines as hardware solvers of combinatorial optimization problems" (paper review)



# **Coherent Ising Machine (CIM)**

### Ising Hamiltonian



### Physical System

Measurement

### Energy



# **Coherent Ising Machine (CIM)**

### Coupling Oscillators









### **HP-Hard Problems**

- Traveling salesman problem (TSP)
- Bin packing/Knapsack
- Boolean satisfiability (SAT)
- Graph coloring
- Subset sum









### **Programming the CIM** A single DOPO



[A. Marandi et al., Nature Photonics '14]









[R Hamerly et al. Science Advances '19]





# **Different but still Difficult**

### CIM does not change the optimization landscape

Nor does it improve its complexity class











- $\delta$ : Qubits controlled by quantum operators
- Classical Ising Hamiltonian (the problem)

- Pauli-Z operator  $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ : Induces no quantum effect
- **Transverse field**
- Pauli-X operator:  $\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ : Leads to superposition









# **Problems with Quantum Annealing**

- Ising problems often require all-to-all dense connections • (D-Wave) Hardware limited to sparse connectivity
- One node mapped to a Chimera graph
  - > 1 Ising spin : N hardware qubits (often quadratic)
  - > 2K qubits  $\Rightarrow \leq 50$  spins
- **Quadratic atop exponential runtime!**







### **Other Approaches**

### **a** Stochastic magnetic tunnel junctions



**c** Coupled electrical relaxation oscillators









# **Evaluation & Comparisons**





## **Evaluation Metrics**

- Computational complexity X
  - > Most Ising machines are heuristic solvers (no theoretical guarantees)
  - > Still  $O(b^{a \cdot n})$  for near-optimal solutions
    - Improve on *b* or *a*
- Empirical performance
  - $p_{SUC}$ : Probability of finding exact ground state in one shot
    - Not time consideration (longer run,  $p_{suc}\uparrow$ )
  - Time-to-solution  $T_{sol} = \tau \frac{1}{\ln(1 p_{suc})}$

# ln 0.01







### **Evaluation Workloads** Dense MaxCut instances 2) Sherrington-Kirkpatrick (SK) problems $H_{\rm SK} = -\sum J_{ij} \cdot s_i s_j$ i<j (compared to classical Hamiltonian) $\rightarrow$ Fixed positive values in J $\rightarrow$ Random +1 or -1 couplings $\rightarrow$ Local interactions $\rightarrow$ Full connectivity > . . .



### Results are collected from various original studies

# **Compared Ising Machines (1)**

| Ising machine/<br>algorithm                | Acronym | <b>Operating principle</b>        | Hardware                  | Hardware<br>connectivity | Parallelization |
|--------------------------------------------|---------|-----------------------------------|---------------------------|--------------------------|-----------------|
| Coherent Ising<br>machine (NTT)            | CIM1    | Dynamical oscillator              | Hybrid (optical/<br>FPGA) | All-to-all               | Yes             |
| Coherent Ising<br>machine (Stanford)       | CIM2    | Dynamical oscillator              | Hybrid (optical/<br>FPGA) | All-to-all               | Yes             |
| Coherent Ising machine                     | CIM3    | Dynamical oscillator<br>algorithm | Predicted <sup>b</sup>    | All-to-all               | Yes             |
| D-Wave quantum<br>annealer 2Q              | DWAV1   | Quantum annealer                  | Superconducting qubits    | Chimera                  | Yes             |
| D-Wave quantum<br>annealer<br>Advantage1.1 | DWAV2   | Quantum annealer                  | Superconducting qubits    | Chimera                  | Yes             |
| D-Wave quantum<br>annealer 2KQ             | DWAV3   | Quantum annealer                  | Superconducting qubits    | Chimera                  | Yes             |
| D-Wave quantum<br>annealer 2KQ             | DWAV4   | Quantum annealer                  | Superconducting qubits    | Chimera                  | Yes             |
| Restricted<br>Boltzmann machine            | RBM     | Simulated annealing<br>algorithm  | FPGA                      | All-to-all               | Yes             |
| Memristor<br>annealing                     | MRT     | Simulated annealing algorithm     | Predicted <sup>b</sup>    | All-to-all               | Yes             |





### **Success Probability**



### **Best scaling with** *N*: $p_{suc} \propto \exp\{-bN\}$



# **Compared Ising Machines (2)**

| Ising machine/<br>algorithm         | Acronym | <b>Operating principle</b>                     | Hardware                      | Hardware<br>connectivity | Parallelization |
|-------------------------------------|---------|------------------------------------------------|-------------------------------|--------------------------|-----------------|
| Breakout local<br>search            | BLS     | Local search and simulated annealing algorithm | CPU                           | All-to-all               | No              |
| Chaotic amplitude control           | CAC     | Dynamical chaotic<br>algorithm                 | FPGA                          | All-to-all               | Yes             |
| Toshiba bifurcation machine         | TBM1    | Discrete simulated bifurcation algorithm       | FPGA                          | All-to-all               | Yes             |
| Fujitsu digital<br>annealer         | FDA1    | Simulated annealing<br>algorithm               | ASIC                          | All-to-all               | Yes             |
| Simulated annealing                 | SA1     | Simulated annealing<br>algorithm               | CPU                           | All-to-all               | Yes             |
| Simulated annealing                 | SA2     | Simulated annealing<br>algorithm               | CPU                           | All-to-all               | No              |
| Parallel tempering                  | PT1     | Simulated annealing<br>algorithm               | CPU                           | All-to-all               | No              |
| Parallel tempering                  | PT2     | Simulated annealing<br>algorithm               | CPU                           | All-to-all               | No              |
| Parallel tempering                  | PT3     | Simulated annealing<br>algorithm               | CPU                           | All-to-all               | No              |
| Photonic recurrent<br>Ising sampler | PRIS    | Oscillator-based annealer                      | <b>Predicted</b> <sup>b</sup> | All-to-all               | Yes             |







![](_page_28_Picture_3.jpeg)

![](_page_29_Picture_0.jpeg)

**Class Discussion** 

![](_page_29_Picture_2.jpeg)

# Conclusion

- Connectivity is crucial for Ising machines
- Quantum annealing (QA) is limited by implementation
  - > QA computational mechanism works in simulation
  - D-Wave hardware does not scale X
  - Quantum mechanics (e.g., entanglement) in QA ?
- The best: Classical digital methods ('currently')
  - > Analogue and quantum approaches rapidly developing
  - >QA is new; Quantum+Classical ?

![](_page_30_Picture_11.jpeg)

![](_page_30_Picture_14.jpeg)

![](_page_30_Figure_15.jpeg)

Backup slides ...

![](_page_31_Picture_2.jpeg)