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Motivation

e Learning based MIMO detection algorithms have been proposed recently,
such as DetNet and OAMPNet, and they are showing potential.

e However, neither approach is effective in practice.
o DetNet's training is unstable for realistic channels.

o OAMPNet suffers a large performance gap (4-7dB at symbol error rate of 10A-3).

e (Can areceiver optimize its detector for every realization of the channel
matrix?



Key Ideas

e |t uses a neural network architecture that strikes a balance between
flexibility and complexity.

o DetNet is too large for online training

o OAMPNet performs poorly with online learning infrastructure.

e An online training algorithm that exploits the locality of channel matrices
at receiver in both frequency and time domain.



Background

Received vector;

y=Hx-+n
The channel matrix H is assumed known, and the goal is:

X = arg min,cy~ ||y — Hx||2

And it's an NP-hard problem.




Iterative Framework for MIMO Detection

This paper proposes that many MIMO detection algorithms can be
transformed into an iterative form:

Residual error from the last round.

Z; = X; + At(b' — Hx,) +|b;
)A( p— Z Transformation in this round for
t+1 Th( t) estimation refinement.
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Optimal Denoiser for Gaussian Noise

Input is z¢, output is %x;, 1, we want the final % to be as close to xas possible.
arg min,, . o E[||%X — x||2|20,. .., Zm+1]
For each specific denoiser, we want:
arg min, E[||X — x||2|2]

So the output of the denoiser should be:
P E[||E[x] — x]|2] = 0

ni(z¢) = E[x|z]



Optimal Denoiser for Gaussian Noise

If we assume that z; —  has an i.i.d. Gaussian distribution with diagonal
covariance matrix ¢2Iy,, each element of the output should be Ez;|-]

z—x; ~ N(0,0;)

z; ~ N(z,0¢)

So the output of the denoiser should be
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DetNet and OAMPNet

DetNet:
q; = X¢-1 — 9£1)HHy + 9§2)HHH§ct_1
w = [0"q, + 0 v, 1 +6,7],
Vi = @gﬁ)ut + 9§7)
% = 0w, + 6}
OAMPNet:

Z: — Xy + Hil)HH('ufHHH + 021)(—1) (y — Hx,)

Xl = ﬂt(zt;U?)



MMNet Design - i.i.d. Gaussian Channel _—
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MMNet Design - i.i.d. Arbitrary Channel

The model is

The denoiser is
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Online Training - Channel Locality to Reduce Complexity
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Both forms of channel locality reduce the cost of training.
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Algorithm 1 MMNet online training

Onllne Tra" 1: M (1;— (290;1struct MMNet with parameters ¢
{©; 7,07},
: ¥} < Initialize model parameters randomly
cforne{l, 2, ...} do > n keeps the time step| nis the interval that the
for f € {1’ 2, ..., F} do channel stays thg same,
H|[f] «— Measured channel at time step n and fre- a-kca coherence time.
quency f
: #Trainlterations < Set to @ if f =# 1 and U otherwise
T or itc 11,2,... #lranlterations} do
D «— Generate random (x,y) batch on H[f] using

O = WIN

A

$ =3- 10,7 = 1000

-

(1)

9: L < Find the loss in (15) for M over the samples
in D

0: ¥ «— Compute the model updates using Vy L

Fl: end for

12 M, f] — M.copy() > Store the parameters 0

13:  end for

14: end for




Computational Complexity
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Fig. 12. Number of multiplication operations per signal detection for different
algorithms on QAMI16 with N, = 64 receive antennas in 3GPP MIMO
model. Detection with MMNet, including its online training process, requires
fewer multiplication operations than detection with pre-trained DetNet and

OAMPNet models.




Result - i.i.d. Gaussian Channels
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Result - i.i.d. Gaussian Channels
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Result - Realistic Channel
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Result - Realistic Channel
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SNR Gap from the Maximum Likelihood
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To achieve a 10A-3 SER, how much more SNR the methods require, compared with ML



Robustness from Channel Estimation Errors

—— MMSE —&— OAMPNet —4— MMNet

T i i T i
107 fFe——e——&———9¢— ‘_./;E
[a4 s i
kI 2
v 107°E =
10_3 = | | | { | —
—34 —32 —30 —28 —26 —24 —22

Channel Estimation MSE (dB)

Fig. 5. SER for QAMI16 versus channel estimation MSE.



Why MMNet Works

0.2 —@— MMNet after linear ]
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Fig. 6. Noise power after the linear and denoiser stages at different layers
of OAMPNet and MMNet. The OAMPNet denoisers become ineffective after
the third layer on 3GPP MIMO channels.



Opinion

This paper is well-developed in structure and the resource (GPU) it requires is
well-fit in this generation (compared with the next generation Quantum
methods).

The online training method considers both effectiveness and the actual
deployment computational burden, which is good.

The structure of this paper is a bit of weird - they put the online training
section way behind, which could help us understand if it's in earlier section.



Discussion

https://app.perusall.com/courses/cos597s f2024-advanced-topics-in-compute
r-science-recent-advances-in-wireless-networks/mmnet?assignmentld=fM76ui

KFDdRRvsZ]j&part=1
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