NeRF²: Neural Radio-Frequency Radiance Fields

by Xiaopeng Zhao, Zhenlin An, Qingrui Pan, Lei Yang

(paper review)

Hongyu Hè

hhy@princeton.edu November 8, 2024

Modeling Radio Frequency (RF) Propagation

• Uplink channel modeling/prediction using downlink info

3 / 35

Hongyu Hè, "NeRF2: Neural Radio-Frequency Radiance Fields" (paper review)

Complexity of RF Radiance Field

Hongyu Hè, "NeRF2: Neural Radio-Frequency Radiance Fields" (paper review)

NeRF: Representing Scenes as Neural Radiance Fields

2D Images

Massively overfit a model for a specific scene

[Mildenhall et al. ECCV '20]

NeRF: Representing Scenes as Neural Radiance Fields

View-dependent Color Density

Neural radiance field—NeRF:

"View"-dependent Spatial Spectrums

NeRF² Design

Neural Radiance Network for RF Propagation

Neural Radiance Network for RF Propagation

Hongyu Hè, "NeRF2: Neural Radio-Frequency Radiance Fields" (paper review)

EM Ray Tracing (Using F_{Θ})

- RX receives $R = H_{TX \to RX} \cdot S = (a_{TX \to RX} e^{J\theta_{TX \to RX}}) \cdot S$ (Friis eq.)
- Accumulated power from voxels $P_i(r, \omega)$ along the ray to $P_{\mathbf{R}\mathbf{X}}(0, \omega)$: $R(\omega) = \sum H_{P(r,\omega) \to P_{RX}} \cdot S(P(r,\omega), -\omega)$ **RF Source Position** F_{Θ} $(P_{\mathrm{TX}}, P_x, \omega)$ P_{TX} Direct **View direction** RX **3D** Location **Emitter** R_5 $P(r,\omega) = P_{\rm RX} + r\omega$ P_2 P_1 P_3 $P_{\rm RX}$ Diffraction Scattering Hongyu Hè, "NeRF2: Neural Radio-Frequency Radiance Fields" (paper review) Reflection 14/35

Two Antenna-specific Training Methods

- Single/omnidirectional RX antenna (gain G_{RX})
 - > No directionality \Rightarrow Combines single from all directions Ω

$$R = \sum_{\omega}^{\Omega} \sqrt{G_{\text{RX}}(\omega)} \cdot R(\omega), \text{ trained with L2 loss}$$

Phased RX antenna array $A_{K \times K}$

Power along
$$\omega$$
: $\Psi(\omega) = \frac{1}{K^2 - 1} \left| \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i,j}(\omega) \cdot e^{\mathbf{J}\Delta\theta_{i,j}} \right|$

"Turbo-Learning"

Motivation: Volume and quality of data are important for deep learning

 \Rightarrow Training with synthetic data generated by NeRF²

Fig. 6: Illustration of turbo-learning

"Turbo-Learning"

Motivation: Volume and quality of data are important for deep learning

 \Rightarrow Training with synthetic data generated by NeRF²

Evaluation

1. Ground truth:
$$\Psi(\omega) = \frac{1}{K^2 - 1} \left| \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i,j}(\omega) \cdot e^{\mathbf{J}\Delta\theta_{i,j}} \right|$$

- 2. Pure Ray Tracing (Matlab)
- 3. Deep Convolutional Generative Adversarial Network (DCGAN) (TX's location → spectrum as an image)
- 4. Variational Autoencoder (VAE) (spectrum images → spectrum images)

"NeRF2: Neural Radio-Frequency Radiance Fields" (paper review)

SSIM: structural similarity index measure

24/35

Hongyu Hè, "NeRF2: Neural Radio-Frequency Radiance Fields" (paper review)

SSIM: structural similarity index measure

25/35

Hongyu Hè, "NeRF2: Neural Radio-Frequency Radiance Fields" (paper review)

1. Ground truth:
$$\Psi(\omega) = \frac{1}{K^2 - 1} \left| \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i,j}(\omega) \cdot e^{\mathbf{J}\Delta\theta_{i,j}} \right|$$

- 2. Pure Ray Tracing (Matlab)
- 3. Deep Convolutional Generative Adversarial Network (DCGAN)
 (TX's location → spectrum as an image)
- 4. Variational Autoencoder (VAE)
 (spectrum images → spectrum images)

No physics related info provided!

Use of NeRF² Generated Data

Task: Predicting angles of arrive (AoAs) given spatial spectrum images **Model**: Angular artificial neural networks (AANNs)

Fig. 10: Architecture of Angular Artificial Neural Network

Field Study: 5G MIMO

Task: Estimation of massive MIMO channel for the Frequency Domain Duplex (FDD) systems for beamforming

- Uplink frequency \neq Downlink frequency
- Uplink path == Downlink path (path sharing)
- Uplink CSI \rightarrow Downlink CSI

NeRF formulation

$$\mathbf{F}_{\Theta}$$
: (CSI_{uplink}, P_x , ω) $\rightarrow (\delta_x, S_x)$

Uplink CSI in place of the TX (client) location

Baselines

FIRE [MobiCom '21], R2F2 [SICOMM '16], OptML [MobiCom '19], and FNN [ICC '19]

Field Study: 5G MIMO

Metrics

- CSI prediction: Signal to noise ratio SNR = S/N
- MU-MIMO: Signal to interference and noise ratio SINR = S/(N+I)

My Review Strengths

- S1. Novel idea: Physics informed ML model
- S2. Spectrum "as a service" with great performance

Weaknesses

- W1. No direct evaluation on attenuation δ prediction
- W2. Scaling to outdoor environments with dynamic objects

30/35

W3. Long training time

Future Ideas

Generalizability across scenes

Backup slides ...

Use of NeRF² Generated Data (larger scale)

Fig. 9: Illustration of example scenes. (a)-(d) shows the semi-indoor environment, which is large-sized and semi-closed halls. (e)-(j) show the full-indoor environment.

al Radio-Frequency Radiance Fields" (paper review)

Class Discussion