NeRF2: Neural Radio-Frequency Radiance Fields

by **Xiaopeng Zhao, Zhenlin An, Qingrui Pan, Lei Yang** (paper review)

Hongyu Hè

hhy@princeton.edu November 8, 2024

Modeling Radio Frequency (RF) Propagation

Uplink channel modeling/prediction using downlink info

Complexity of RF Radiance Field

Hongyu Hè, "NeRF²: Neural Radio-Frequency Radiance Fields" (paper review)

NeRF: Representing Scenes as Neural Radiance Fields

2D Images

Massively overfit a model for a specific scene

NeRF: Representing Scenes as Neural Radiance Fields

View-dependent Color Density

Neural radiance field—NeRF:

"View"-dependent Spatial Spectrums

P1 P₂ P₃ **P4**

Hongyu Hè, "NeRF2: Neural Radio-Frequenc

NeRF² Design

Neural Radiance Network for RF Propagation

Neural Radiance Network for RF Propagation

EM Ray Tracing (Using F_Θ)

- RX receives $R = H_{TX \to RX} \cdot S = (a_{TX \to RX}e^{J\theta_{TX \to RX}} \cdot S$ (Friis eq.)
- Accumulated power from voxels $P_i(r, \omega)$ along the ray to $P_{RX}(0, \omega)$: *D* $R(\omega) =$ $\sum H_{P(r,\omega)\to P_{RX}} \cdot S(P(r,\omega), -\omega)$ *r*=0 **RF Source Position** F_{Θ} $P_{\rm TX}$ $(P_{\text{TX}}, P_x, \omega)$ **Direct View direction** RX **3D Location** Emitter \angle FR₅ $P(r,\omega) = P_{\text{RX}} + r\omega$ $P₂$ $P₁$ P_3 Rx **Diffraction Scattering** 14 Hongyu Hè, "NeRF2: Neural Radio-Frequency Radiance Fields" (paper review) **Reflection** 14/35

Two Antenna-specific Training Methods

Single/omnidirectional RX antenna (gain G_{RX})

 \triangleright No directionality \Rightarrow Combines single from all directions Ω

$$
R = \sum_{\omega}^{\Omega} \sqrt{G_{\text{RX}}(\omega)} \cdot R(\omega)
$$
, trained with L2 loss

Phased RX antenna array $A_{K\times K}$

Power along
$$
\omega
$$
: $\Psi(\omega) = \frac{1}{K^2 - 1} \left| \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i,j}(\omega) \right| \cdot e^{\mathbf{J} \Delta \theta_{i,j}}$

"Turbo-Learning"

Motivation: Volume and quality of data are important for deep learning

 \Rightarrow Training with synthetic data generated by NeRF²

Fig. 6: Illustration of turbo-learning

"Turbo-Learning"

Motivation: Volume and quality of data are important for deep learning

 \Rightarrow Training with synthetic data generated by NeRF²

Evaluation

1. Ground truth:
$$
\Psi(\omega) = \frac{1}{K^2 - 1} \left| \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i,j}(\omega) \cdot e^{\mathbf{J} \Delta \theta_{i,j}} \right|
$$

- 2. Pure Ray Tracing (Matlab)
- 3. Deep Convolutional Generative Adversarial Network (DCGAN) $(TX's location \rightarrow spectrum as an image)$
- 4. Variational Autoencoder (VAE) (spectrum images \rightarrow spectrum images)

"NeRF2: Neural Radio-Frequency Radiance Fields" (paper review)

SSIM: structural similarity index measure

24/35

24 Hongyu Hè, "NeRF2: Neural Radio-Frequency Radiance Fields" (paper review)

SSIM: structural similarity index measure

25/35

25 Hongyu Hè, "NeRF2: Neural Radio-Frequency Radiance Fields" (paper review)

1. Ground truth:
$$
\Psi(\omega) = \frac{1}{K^2 - 1} \left| \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i,j}(\omega) \cdot e^{\mathbf{J} \Delta \theta_{i,j}} \right|
$$

- 2. Pure Ray Tracing (Matlab)
- 3. Deep Convolutional Generative Adversarial Network (DCGAN) $(TX's location \rightarrow spectrum as an image)$
- 4. Variational Autoencoder (VAE) $(spectrum images) \rightarrow spectrum images)$

No physics related info provided!

Use of NeRF2 Generated Data

Task: Predicting angles of arrive (AoAs) given spatial spectrum images **Model**: Angular artificial neural networks (AANNs)

Fig. 10: Architecture of Angular Artificial Neural Network

Field Study: 5G MIMO

Task: Estimation of massive MIMO channel for the Frequency Domain Duplex (FDD) systems for beamforming

- Uplink frequency \neq Downlink frequency
- Uplink path $==$ Downlink path (path sharing)
- Uplink $CSI \rightarrow Downlink CSI$

NeRF formulation

$$
\mathbf{F}_{\Theta}: (\mathrm{CSIuplink}, P_x, \omega) \rightarrow (\delta_x, S_x)
$$

Uplink CSI in place of the TX (client) location

Baselines

FIRE [MobiCom '21], R2F2 [SICOMM '16], OptML [MobiCom '19], and FNN [ICC '19]

Field Study: 5G MIMO

Metrics

- CSI prediction: Signal to noise ratio SNR = *S*/*N*
- MU-MIMO: Signal to interference and noise ratio SINR = *S*/(*N+I*)

My Review Strengths

- S1. Novel idea: Physics informed ML model
- S2. Spectrum "as a service" with great performance

Weaknesses

- W1. No direct evaluation on attenuation *δ* prediction
- W₂. Scaling to outdoor environments with dynamic objects

 $30/35$

W3. Long training time

Future Ideas

Generalizability across scenes
30/35 Hongyu Hè, "NeRF2: Neural Radio-Frequency Radiance Fields" (paper review)

Backup slides...

Use of NeRF2 Generated Data (larger scale)

Fig. 9: Illustration of example scenes. (a)-(d) shows the semi-indoor environment, which is large-sized and semi-closed halls. (e)-(j) show the full-indoor environment.

al Radio-Frequency Radiance Fields" (paper review)

Class Discussion